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Near-Optimal Statistical Query Lower Bounds for /:¥e[g{e55 i [er21 1),
Intersections of Halfspaces with Gaussian Marginals

e Goal: Learnf: R" — {x1} from hypothesis class # given m samples
(X5 Yidietm) ~ D-

« From m samples, obtain f € # satisfying Pr[/i(x) # y] < OPT + 0.1 for

OPT = min Pr[h(x) # y] with probability > 0.9.
he#



Near-Optimal Si& 1= Ko TETRY Lower Bounds for Agnostically
Learning Intersections of Halfspaces with Gaussian Marginals

 Problem: Hard to prove computational lower bounds of agnostic learning.

* ldea: Use a restricted model for lower bounds: queries instead of samples.

» A statistical query takes (g, 7) with g : R" X {1} — [—1,1], tolerance 7 > 0O
and returns g € E[g(x,y)] £ .

e Goal: Learnf: R” —» {—1,1} using SQs.

 For poly(n) queries of tolerance 7 > 1/poly(n), obtain f satisfying

Pr[ f(x) # y] < OPT + 0.1 for OPT = min Pr[h(x) # y] with probability > 0.9.
heA



Near-Optimal Si& 1= Ko TETRY Lower Bounds for Agnostically
Learning Intersections of Halfspaces with Gaussian Marginals

* Problem: Hard to prove computational lower bounds of agnostic learning.

* ldea: Use a restricted model for lower bounds: queries instead of samples.

» A statistical query takes (g, 7) with g : R" X {£1} — [—1,1], tolerance 7 > 0 and returns
q € Elgx,y)] £

e Every SQ algorithm can be simulated by a sample-based algorithm:

1 m
For m = In(2/6)/(27%) samples, — Z g(x,y,) € Elg(x,y)] £ 7 with probability > 1 — 6.
m
i=1

 Many sample-based algorithms can be simulated with SQs: (e.g. gradient descent, polynomial
regression)

 But, not all! Parities are PAC-learnable, but not SQ-learnable.



Near-Optimal Statistical Query for Agnostically
Learning Intersections of Halfspaces with Gaussian Marginals

» For hypothesis class #, show that any agnostic SQ algorithm & learning
A either

1. makes > superpoly(n) queries (£); or

2. makes at least one query of tolerance 7 < 1/superpoly(n).
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- A halfspace is a function i(x) = sign(w’ x — b).
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- A halfspace is a function i(x) = sign(w’ x — b).
» /A, is the class of all intersections of k halfspaces.

. f(x) = min sign(wiTx — b;)
iE[li]
=2 [1w/x>p} -1
i=1
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» Features are drawn from a multivariate Gaussian distribution: x ~ 4/ (0,7,).
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» [Klivans, O’Donnell, Servedio 2008] /, can be agnostically learned to

accuracy € with an L} polynomial approximation algorithm with pn Ologk)
samples.

e Can be implemented as an SQ algorithm that makes pn Ollogk)

tolerance n—9Uogk)

queries of

» Question: Is this dependence on k optimal?
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\
Learning Intersections of Halfspaces with Gaussian Marginals

(Ctd.)
» [KOS 2008] #, can be agnostically learned to accuracy € with n

O(log k)

queries of tolerance n 21024

- [Diakonikolas, Kane, Pittas, Zarifis 2021] To agnostically learn #Z, to
0.1
accuracy e, either 2"  queries are needed or at least one query of
tolerance < n~(V10gk) g necessary.

» Question: Which bound has the correct dependence on k?
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(Ctd.)

» [KOS 2008] #, can be agnostically learned to accuracy € with n
queries of tolerance n 21024

O(log k)

« [DKPZ 2021] Requires either 2”0'1 queries or at least one query of tolerance

0.1
 Our results: Requires either 2" queries or at least one query of tolerance
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(Ctd.)

KOS *08]: n 02k
-———m- m—

IDKPZ *21]: n*¥V1oghk)

THSSV *22 (?)]: n¥logh)
_

Minimum SQ complexity needed to agnostically learn intersections of & halfspaces.



Related problems

» Realizably learning # ;, with Gaussian marginals:
. [KOS ’08] n°1°2%) samples (L' polynomial approximation)
» [Vempala ’10] poly(n, k) + k9Uogk) (pCA approach)
» Agnostically learning halfspaces (# ;) with Gaussian marginals:
. [KKMS ’08] n°log(n)/e? samples
 [Ganzburg '02] + [DKPZ ’21] n21/ ) SQ complexity
» Learning &, in distribution-free setting thought to be hard:
* [Klivans, Sherstov ’06] Cryptographic hardness results

» [Sherstov ’13] No efficient algos with polynomial threshold hypotheses for Z,
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(Ctd.)

KOS *08]: n 02k
-———m- m—

IDKPZ *21]: n*¥V1oghk)

THSSV *22 (?)]: n¥logh)
_

Minimum SQ complexity needed to agnostically learn intersections of & halfspaces.



Proving an SQ lower bound

Reverse-engineering our result

. If there exists hy, ..., h, € # with | (h, hj)\ = | —[hl-(x)hj(x)]\ < 1/m, then the

SQ-dimension of # is at least m.

« Any SQ algorithm that learns # to error 1/2 —
queries or at least one query of tolerance O(m

—1/3

m must make either Q(m1/>)

—1/3)_

+ Intuition: If f: R¥ - {—1,1} for k < n cannot be approximated by low-degree

polynomials, then Z = {x — f(Wx) : W € |
dimension.

xn WWT = I} has high SQ-

» Suffices to show existence of intersection of ®(k) halfspaces f that is nearly

orthogonal to low-degree polynomials.



SQ lower bounds on {*1}”
[IDachman-Soled, Feldman, Tan, Wan, Wimmer 2014]

. f:{x1}* > [—1,1]is d-resilient if for all p € P, (d-degree polys), {f,p) = 0.

. fis a-approximately d-resilient if there exists g : {£1}* — [—1,1] such that Q&g&{ﬁ;ﬁ’}’gg

If =gl = = e~ Unif({ 1) | f(x) — g(x)| < aand g is d-resilient.

. [DFTWW14, Thm 1.1] For k = n'3 if f: {£1}* - {*1} is a-approximately d
-resilient, then agnostically learning Z = {f(x¢) : S C [n], | S| = k}to excess error

(1 — a)/2 requires either n**?9 queries or at least one query of tolerance < n =4, ""3

 Lower bound on SQ dimension.

. [DFTWW, Thm 1.6] Tribes : {+1}* - {%1}(read-once monotone DNF) is
O(k~13)-approximately Q(log(k)/log log k)-resilient.

 Bounds on low-degree Fourier coefficients provide transform to resilient
approximation.



Adaptation to ./ (0,7))

[IDiakonikolas, Kane, Pittas, Zarifis 2021]

o [ k {—1,1} is a-approximately d-resilient if there exists g : | K 5 [—=1,1]
such that ||f — g||; £ @ and Low j[g](x) = 0.

» [DKPZ ’21, Prop 2.1] f is a-approximately d-resilient iff ||f — p||; = 1 — a for all

pEP,

. [DKPZ 21, Thm 1.4] For k = n"Lif ||[f=p|l; > 1 —aforallp € &, then

learning # = {x I—O>rf(Wx) . Wel

requires either 8™ queries or one query of tolerance n

kxn, Ww! =7 } to excess error (1 — a)/2
—Q(d)

. [DKPZ ’21, Thm 3.5] For d = Q(y/logk), ||f = pll; > 0.1 forallp € &, for

some f € Z ;.



Our technical contributions:

Improving the approximate resilience bound

. Cube,(x) = sign(0, — ||x||,) =2max1{ |x;| < 6.} — 1.
1€[K]

. 0, = ©(y/log k) chosen to have
= 0.l Cube ()] = 0.

k—0.49

» Lemma: Cube, is -approximately (log(k)/log log k)

-resilient.

« Theorem: For k = 0(n0'49), agnostically learning
F = {x — Cube,(Wx) : W e R*" WW! =1} C 5 to
excess error (1 — k=%4%)/2 requires either 0™ queries or
one query of tolerance n ~*¥ogk)Vloglogk)

HYPERCUBGE







Hermite polynomials

» Multivariate probabilisist's Hermite polynomials { H;} ;o\« is an orthogonal basis for LWV (0,1})):

« (HiHy) =E,_yopHOH)] =1 - JH{T =T}
_ Hermite representation: f(x) = Z ADH 4, for ) ={(fH J)/\m
Jewk

» Decomposition of f

. Low,[f1(x) = ) ADH,x)

|[J[<d

. High,[f1(x) = f(x) = Low,[f1(x) = ) AH,x)

|J|>d



Bound on low-degree Hermite coefficients of cube

o CUbek(X) — Slgn(ek — HxHoo)
(41n k)?
k

_ Lemma: [|[Low,[Cube,][|3 = ) Cube,(J)? <
|J|<d

+ For d = In(k)/400 InIn k, gives ||Low [Cube,]||5 < k=07

* Proof by exact computation of univariate Hermite coefficients of
t— 1{|7] < 6,}, bound by Stirling inequality and

0, €[\/2Ink—In(2Ink),\/2Ink]



o [ K - {—1,1} is a-approximately d-resilient if there exists
g : R¥ = [=1,1] such that ||f — g||; < @ and Low [g](x) = 0.

» Goal: Transform f with small ||Low ] f]||, to obtain bounded g that
approximates f and is uncorrelated to low-degree polynomials.

o Idea #1: g(x) := High [ f](x).

Approximate Resilience: Truncation Transform

e llg = fll; < lILow,[f1ll, @ - B
» Low [g]=0% b §<

e 21is not bounded =



Approximate Resilience: Truncation Transform

o [ K - {—1,1} is a-approximately d-resilient if there exists
g : R¥ - [=1,1] such that ||f — g||; < @ and Low [g](x) = 0.

 Goal: Transform f to obtain bounded g that approximates f and is
uncorrelated to low-degree polynomials.

o Idea #2: g = High [f](x) - 1{ |Low [f](x)| < 7}

» Forlarge, ||g —fll; < 2|[Low,[f]l[, & L /Hmm
» Forlarge n, ||[Low,[g]]l, < |[Low,[f]ll,/a @ (’ — j*

\ — £lx)
c Jlgll £ 1 +n & 1



Approximate Resilience: Truncation Transform

o [ K - {—1,1} is a-approximately d-resilient if there exists
g : R¥ - [=1,1] such that ||f — g||; < @ and Low [g](x) = 0.

 Goal: Transform f to obtain bounded g that approximates f and is
uncorrelated to low-degree polynomials.

. [DFTWW ’14]
- h(x) = High,[High,[f]- 1{ [Low,[f]| < n}]

+ 8(x) = h(x)/||h] .
. @



Approximate Resilience: Truncation Transform

o [ k {+1} is a-approximately d-resilient if there exists
g : R¥ - [—1,1] such that ||f — gll; £ aand Low [g](x) = O.

. TruncHigh,,[f] = High,[f1(x) - 1{ | Low,[f1(x) | < 1}

. Letfy :=fandf; = TruncHigh, [f] fori — oo.

. For some decaying 77, and a = k"%, have (1) ||fis ]l < [fill o + /(3 - 21+l
@) lim [[Low,[£]ll = 0, and @) [lfiy, —fll, < @/(3 - 4.

» By limit argument, exists f* with (1) ||/*||, < 1 + a/3, 2) Low [ f*] = 0,
and @3) [If = £II, < 2a/3. Let g := f*/fllo.






What else is there?

» Second proof for larger k = 20(™) (rather than k = O(n"*”)) bounds on L!

approximate degree of random intersection of halfspaces.

 Based on hardness of weak-learning intersections of halfspaces with
membership queries [De, Servedio 2021]

. Dependence on accuracy ¢; n**ogkyloglogk+1/ ") bound by augmenting
construction with a single centered halfspace [Ganzburg 2002]

e Optimality of learning families with Gaussian suﬁace area < § W|th L!
nolynomial approximation: SQ complexity of n*% “og s) VIS n0G") [KOS 2008]



Thanks!



