Clayton Sanford Columbia Computer Science February 14th, 2022

- Goal: Learn $f: \mathbb{R}^n \to \{\pm 1\}$ from hypothesis class \mathcal{H} given m samples $(x_i, y_i)_{i \in [m]} \sim \mathcal{D}.$
- OPT = min Pr[$h(x) \neq y$] with probability ≥ 0.9 . $h \in \mathcal{H}$

• From *m* samples, obtain $f \in \mathcal{H}$ satisfying $\Pr[h(x) \neq y] \leq OPT + 0.1$ for

- Problem: Hard to prove computational lower bounds of agnostic learning.
- Idea: Use a restricted model for lower bounds: queries instead of samples.
- A statistical query takes (g, τ) with $g : \mathbb{R}^n \times \{\pm 1\} \to [-1,1]$, tolerance $\tau > 0$ and returns $q \in \mathbb{E}[g(x, y)] \pm \tau$.
- Goal: Learn $f: \mathbb{R}^n \to \{-1,1\}$ using SQs.
- For poly(n) queries of tolerance $\tau \ge 1/poly(n)$, obtain f satisfying $\Pr[f(x) \neq y] \leq OPT + 0.1$ for $OPT = \min \Pr[h(x) \neq y]$ with probability ≥ 0.9 . $h \in \mathcal{H}$

- **Problem:** Hard to prove computational lower bounds of agnostic learning.
- Idea: Use a restricted model for lower bounds: queries instead of samples.
- A statistical query takes (g, τ) with $g : \mathbb{R}^n \times \{\pm 1\} \to [-1,1]$, tolerance $\tau > 0$ and returns $q \in \mathbb{E}[g(x, y)] \pm \tau$.
- Every SQ algorithm can be simulated by a sample-based algorithm:

For
$$m = \ln(2/\delta)/(2\tau^2)$$
 samples, $\frac{1}{m} \sum_{i=1}^{m} \frac{1}{m} \sum_{$

- Many sample-based algorithms can be simulated with SQs: (e.g. gradient descent, polynomial regression)
 - But, not all! Parities are PAC-learnable, but not SQ-learnable.

 $g(x_i, y_i) \in \mathbb{E}[g(x, y)] \pm \tau$ with probability $\geq 1 - \delta$.

- For hypothesis class $\mathcal H,$ show that any agnostic SQ algorithm $\mathcal A$ learning $\mathcal H$ either
 - 1. makes \geq superpoly(*n*) queries (\geq); or
 - 2. makes at least one query of tolerance $\tau \leq 1/\text{superpoly}(n)$.

• A halfspace is a function $h(x) = sign(w^T x - b)$.

W ,

- A halfspace is a function $h(x) = sign(w^T x b)$.
- \mathcal{H}_k is the class of all intersections of k halfspaces.

•
$$f(x) = \min_{i \in [k] \atop k} \operatorname{sign}(w_i^T x - b_i)$$
$$= 2 \prod_{i=1}^{K} \mathbf{1}\{w_i^T x \ge b_i\} - 1$$

• Features are drawn from a multivariate Gaussian distribution: $x \sim \mathcal{N}(0, I_n)$.

- samples.
 - tolerance $n^{-O(\log k)}$.
 - Question: Is this dependence on k optimal?

• [Klivans, O'Donnell, Servedio 2008] \mathcal{H}_k can be agnostically learned to accuracy ϵ with an L^1 polynomial approximation algorithm with $n^{O(\log k)}$

• Can be implemented as an SQ algorithm that makes $n^{O(\log k)}$ queries of

- queries of tolerance $n^{-O(\log k)}$.
- [Diakonikolas, Kane, Pittas, Zarifis 2021] To agnostically learn \mathscr{H}_k to accuracy ϵ , either $2^{n^{0.1}}$ queries are needed or at least one query of tolerance $\leq n^{-\tilde{\Omega}(\sqrt{\log k})}$ is necessary.
 - Question: Which bound has the correct dependence on k?

• **[KOS 2008]** \mathscr{H}_k can be agnostically learned to accuracy ϵ with $n^{O(\log k)}$

- queries of tolerance $n^{-O(\log k)}$.
- $< n^{-\tilde{\Omega}(\sqrt{\log k})}$
- Our results: Requires either $2^{n^{0.1}}$ queries or at least one query of tolerance $< n^{-\tilde{\Omega}(\log k)}$

• **[KOS 2008]** \mathscr{H}_k can be agnostically learned to accuracy ϵ with $n^{O(\log k)}$

• **[DKPZ 2021]** Requires either $2^{n^{0.1}}$ queries or at least one query of tolerance

[KOS '08]: *n*^{O(log k)}

Minimum SQ complexity needed to agnostically learn intersections of k halfspaces.

Related problems

- Realizably learning \mathcal{H}_k with Gaussian marginals:
 - **[KOS '08]** $n^{O(\log k)}$ samples (L^1 polynomial approximation)
 - **[Vempala '10]** $poly(n, k) + k^{O(\log k)}$ (PCA approach)
- Agnostically learning halfspaces (\mathscr{H}_1) with Gaussian marginals:
 - **[KKMS '08]** $n^2 \log(n)/\epsilon^2$ samples
 - [Ganzburg '02] + [DKPZ '21] $n^{\Omega(1/\epsilon^2)}$ SQ complexity
- Learning \mathcal{H}_k in distribution-free setting thought to be hard:
 - [Klivans, Sherstov '06] Cryptographic hardness results
 - [Sherstov '13] No efficient algos with polynomial threshold hypotheses for \mathcal{H}_2

[KOS '08]: *n*^{O(log k)}

Minimum SQ complexity needed to agnostically learn intersections of k halfspaces.

Proving an SQ lower bound Reverse-engineering our result

- If there exists $h_1, \ldots, h_m \in \mathcal{H}$ with $|\langle h_i, h_j \rangle| = |\mathbb{E}[h_i(x)h_j(x)]| \le 1/m$, then the **SQ-dimension** of \mathcal{H} is at least *m*.
- Any SQ algorithm that learns \mathscr{H} to error $1/2 m^{-1/3}$ must make either $\Omega(m^{1/3})$ queries or at least one query of tolerance $O(m^{-1/3})$.
- Intuition: If $f : \mathbb{R}^k \to \{-1,1\}$ for $k \ll n$ cannot be approximated by low-degree polynomials, then $\mathscr{H} = \{x \mapsto f(Wx) : W \in \mathbb{R}^{k \times n}, WW^T = I\}$ has high SQ-dimension.
- Suffices to show existence of intersection of $\Theta(k)$ halfspaces f that is nearly orthogonal to low-degree polynomials.

SQ lower bounds on $\{\pm 1\}^n$ [Dachman-Soled, Feldman, Tan, Wan, Wimmer 2014]

- $f: \{\pm 1\}^k \to [-1,1]$ is *d*-resilient if for all $p \in \mathcal{P}_d$ (*d*-degree polys), $\langle f, p \rangle = 0$.
- f is α -approximately d-resilient if there exists $g: \{\pm 1\}^k \rightarrow [-1,1]$ such that $||f - g||_1 = \mathbb{E}_{x \sim \text{Unif}(\{\pm 1\}^k)} |f(x) - g(x)| \le \alpha \text{ and } g \text{ is } d\text{-resilient.}$
- **[DFTWW14, Thm 1.1]** For $k = n^{1/3}$, if $f: \{\pm 1\}^k \rightarrow \{\pm 1\}$ is α -approximately d -resilient, then agnostically learning $\mathscr{H} = \{f(x_S) : S \subset [n], |S| = k\}$ to excess error $(1 - \alpha)/2$ requires either $n^{\Omega(d)}$ queries or at least one query of tolerance $\leq n^{-\Omega(d)}$.
 - Lower bound on SQ dimension.
- **[DFTWW, Thm 1.6]** Tribes : $\{\pm 1\}^k \rightarrow \{\pm 1\}$ (read-once monotone DNF) is $O(k^{-1/3})$ -approximately $\Omega(\log(k)/\log\log k)$ -resilient.
 - Bounds on low-degree Fourier coefficients provide transform to resilient approximation.

Adaptation to $\mathcal{N}(0, I_n)$ [Diakonikolas, Kane, Pittas, Zarifis 2021]

- $f : \mathbb{R}^k \to \{-1,1\}$ is α -approximately *d*-resilient if there exists $g : \mathbb{R}^k \to [-1,1]$ such that $\|f g\|_1 \le \alpha$ and $\text{Low}_d[g](x) = 0$.
- **[DKPZ '21, Prop 2.1]** f is α -approximately d-resilient iff $||f p||_1 \ge 1 \alpha$ for all $p \in \mathcal{P}_d$.
- **[DKPZ '21, Thm 1.4]** For $k = n^{0.1}$, if $||f p||_1 \ge 1 \alpha$ for all $p \in \mathscr{P}_d$, then learning $\mathscr{H} = \{x \mapsto f(Wx) : W \in \mathbb{R}^{k \times n}, WW^T = I\}$ to excess error $(1 \alpha)/2$ requires either $2^{\Omega(n^{0.1})}$ queries or one query of tolerance $n^{-\Omega(d)}$.
- **[DKPZ '21, Thm 3.5]** For $d = \tilde{\Omega}(\sqrt{\log k})$, $||f p||_1 \ge 0.1$ for all $p \in \mathcal{P}_d$ for some $f \in \mathcal{H}_k$.

Our technical contributions: Improving the approximate resilience bound

•
$$\operatorname{Cube}_k(x) = \operatorname{sign}(\theta_k - ||x||_{\infty}) = 2 \max_{i \in [k]} ||x||_{\infty}$$

•
$$\theta_k = \Theta(\sqrt{\log k})$$
 chosen to have
 $\mathbb{E}_{x \sim \mathcal{N}(0, I_k)}[\text{Cube}_k(x)] = 0.$

- Lemma: Cube_k is $k^{-0.49}$ -approximately $\Omega(\log(k)/\log\log \log k)$ -resilient.
- **Theorem:** For $k = O(n^{0.49})$, agnostically learning $\mathscr{H} = \{ x \mapsto \text{Cube}_k(Wx) : W \in \mathbb{R}^{k \times n}, WW^T = I \} \subset \mathscr{H}_{\gamma_k} \text{ to}$ excess error $(1 - k^{-0.49})/2$ requires either $2^{O(n^{0.1})}$ queries or one query of tolerance $n^{-\Omega(\log(k)/\log\log \log k)}$

 $\lim_{k \to 1} \mathbf{1} \{ |x_i| \le \theta_k \} - 1.$

 $2\theta_k$

Agnostically learning \mathcal{H}_k requires **SQ complexity** $n^{\Omega(\log(k)/\log\log k)}$

DKPZ: L^1 -approx degree diff α -approx d-resilient

DKPZ: Agnostically learning $\{x \mapsto f(Wx)\}$ with L^1 -approx degree *d* of *f* requires SQ complexity $n^{\Omega(d)}$

Hermite polynomials

- - $\langle H_J, H_{J'} \rangle = \mathbb{E}_{x \sim \mathcal{N}(0, I_k)} [H_J(x) H_{J'}(x)] = J_1$

Hermite representation: $f(x) = \sum \tilde{f}(J)H_J$, for $\tilde{f}(J) = \langle f, H_J \rangle / \sqrt{J!}$ $J \in \mathcal{N}^k$

Decomposition of *f*:

Low_d[f](x) =
$$\sum_{|J| \le d} \tilde{f}(J)H_J(x)$$

 $\operatorname{High}_{d}[f](x) = f(x) - \operatorname{Low}_{d}[f](x) = \sum \tilde{f}(J)H_{J}(x)$

• Multivariate probabilisist's Hermite polynomials $\{H_J\}_{J \in \mathbb{N}^k}$ is an orthogonal basis for $L^2(\mathcal{N}(0, I_k))$:

$$!\cdot\ldots\cdot J_k!\mathbf{1}\{J=J'\}$$

Bound on low-degree Hermite coefficients of cube

- $\operatorname{Cube}_k(x) = \operatorname{sign}(\theta_k ||x||_{\infty})$
- Lemma: $\|\text{Low}_d[\text{Cube}_k]\|_2^2 = \sum_{|J| \le d}$
 - For $d = \ln(k)/400 \ln \ln k$, gives $\|\text{Low}_d[\text{Cube}_k]\|_2^2 \le k^{-0.99}$
- Proof by exact computation of univariate Hermite coefficients of $t \mapsto \mathbf{1}\{ |t| \le \theta_k \}$, bound by Stirling inequality and $\theta_k \in [\sqrt{2 \ln k} \ln(2 \ln k), \sqrt{2 \ln k}]$

$$\widetilde{\text{Cube}}_k(J)^2 \le \frac{(4\ln k)^d}{k}$$

- $f: \mathbb{R}^k \to \{-1, 1\}$ is α -approximately d-resilient if there exists $g: \mathbb{R}^k \to [-1,1]$ such that $\|f - g\|_1 \leq \alpha$ and $\operatorname{Low}_d[g](x) = 0$.
- Goal: Transform f with small $\|Low_d[f]\|_2$ to obtain bounded g that **approximates** f and is **uncorrelated** to low-degree polynomials.
- Idea #1: $g(x) := \text{High}_{d}[f](x)$.
 - $||g f||_1 \le ||Low_d[f]||_2 \bigcirc$
 - $\operatorname{Low}_d[g] = 0$
 - g is not bounded 💀

- $f : \mathbb{R}^k \to \{-1,1\}$ is α -approximately *d*-resilient if there exists $g : \mathbb{R}^k \to [-1,1]$ such that $\|f g\|_1 \le \alpha$ and $\operatorname{Low}_d[g](x) = 0$.
- Goal: Transform f to obtain bounded g that approximates f and is uncorrelated to low-degree polynomials.
- Idea #2: $g = \text{High}_d[f](x) \cdot \mathbf{1}\{|\text{Low}_d[f](x)| \le \eta\}$
 - For large η , $||g f||_1 \le 2||\text{Low}_d[f]||_2 \cong$
 - For large η , $\|\operatorname{Low}_d[g]\|_2 \le \|\operatorname{Low}_d[f]\|_2/a$
 - $\bullet \ \|g\|_{\infty} \le 1 + \eta \Leftrightarrow$

- $f: \mathbb{R}^k \to \{-1, 1\}$ is α -approximately d-resilient if there exists $g: \mathbb{R}^k \to [-1,1]$ such that $\|f - g\|_1 \leq \alpha$ and $\operatorname{Low}_d[g](x) = 0$.
- Goal: Transform f to obtain bounded g that approximates f and is **uncorrelated** to low-degree polynomials.
- **[DFTWW '14]**
 - $h(x) = \text{High}_d[\text{High}_d[f] \cdot \mathbf{1}\{|\text{Low}_d[f]| \le \eta\}]$
 - $g(x) = h(x)/||h||_{\infty}$.

- $f : \mathbb{R}^k \to \{\pm 1\}$ is α -approximately *d*-resilient if there exists $g : \mathbb{R}^k \to [-1,1]$ such that $\|f g\|_1 \le \alpha$ and $\operatorname{Low}_d[g](x) = 0$.
- TruncHigh_{*d*, η [*f*] = High_{*d*}[*f*](*x*) · **1**{ |Low_{*d*}[*f*](*x*) | ≤ η }}
- Let $f_0 := f$ and $f_{i+1} = \text{TruncHigh}_{d,\eta_i}[f_i]$ for $i \to \infty$.
- For some decaying η_i and $\alpha = k^{0.49}$, have (1) $\|f_{i+1}\|_{\infty} \le \|f_i\|_{\infty} + \alpha/(3 \cdot 2^{i+1})$, (2) $\lim_{i \to \infty} \|\text{Low}_d[f_i]\| = 0$, and (3) $\|f_{i+1} - f_i\|_1 \le \alpha/(3 \cdot 4^i)$.
- By limit argument, exists f^* with (1) $||f^*||_{\infty} \le 1 + \alpha/3$, (2) $\text{Low}_d[f^*] = 0$, and (3) $||f f^*||_1 \le 2\alpha/3$. Let $g := f^*/||f||_{\infty}$.

DKPZ: Agnostically learning $\{x \mapsto f(Wx)\}$ with L^1 -approx degree *d* of *f* requires SQ complexity $n^{\Omega(d)}$

What else is there?

- approximate degree of random intersection of halfspaces.
 - membership queries [De, Servedio 2021]
- construction with a single centered halfspace [Ganzburg 2002]
- Optimality of learning families with Gaussian surface area $\leq s$ with L^{\perp}

• Second proof for larger $k = 2^{O(n^{0.245})}$ (rather than $k = O(n^{0.49})$) bounds on L^1

Based on hardness of weak-learning intersections of halfspaces with

• Dependence on accuracy ϵ : $n^{\Omega(\log(k)/\log\log \log k + 1/\epsilon^2)}$ bound by augmenting

polynomial approximation: SQ complexity of $n^{\Omega(s^2/\log s)}$, vs $n^{O(s^2)}$ [KOS 2008]

Thanks!