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Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• Goal: Learn  from hypothesis class  given  samples 
.


• From  samples, obtain  satisfying  for 
 with probability .

f : ℝn → {±1} ℋ m
(xi, yi)i∈[m] ∼ 𝒟

m f ∈ ℋ Pr[h(x) ≠ y] ≤ OPT + 0.1
OPT = min

h∈ℋ
Pr[h(x) ≠ y] ≥ 0.9



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• Problem: Hard to prove computational lower bounds of agnostic learning.


• Idea: Use a restricted model for lower bounds: queries instead of samples.


• A statistical query takes  with , tolerance  
and returns .


• Goal: Learn  using SQs.


• For  queries of tolerance , obtain  satisfying 
 for  with probability .

(g, τ) g : ℝn × {±1} → [−1,1] τ > 0
q ∈ 𝔼[g(x, y)] ± τ

f : ℝn → {−1,1}

poly(n) τ ≥ 1/poly(n) f
Pr[ f(x) ≠ y] ≤ OPT + 0.1 OPT = min

h∈ℋ
Pr[h(x) ≠ y] ≥ 0.9



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• Problem: Hard to prove computational lower bounds of agnostic learning.


• Idea: Use a restricted model for lower bounds: queries instead of samples.


• A statistical query takes  with , tolerance  and returns 
.


• Every SQ algorithm can be simulated by a sample-based algorithm:


• For  samples,  with probability . 


• Many sample-based algorithms can be simulated with SQs: (e.g. gradient descent, polynomial 
regression)


• But, not all! Parities are PAC-learnable, but not SQ-learnable.

(g, τ) g : ℝn × {±1} → [−1,1] τ > 0
q ∈ 𝔼[g(x, y)] ± τ

m = ln(2/δ)/(2τ2)
1
m

m

∑
i=1

g(xi, yi) ∈ 𝔼[g(x, y)] ± τ ≥ 1 − δ



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• For hypothesis class , show that any agnostic SQ algorithm  learning 
 either 


1. makes  queries (🦸); or 


2. makes at least one query of tolerance .

ℋ 𝒜
ℋ

≥ superpoly(n)

τ ≤ 1/superpoly(n)



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• A halfspace is a function .h(x) = sign(wTx − b)

w



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• A halfspace is a function .


•  is the class of all intersections of  halfspaces.


•  

      

h(x) = sign(wTx − b)

ℋk k

f(x) = min
i∈[k]

sign(wT
i x − bi)

= 2
k

∏
i=1

1{wT
i x ≥ bi} − 1



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• Features are drawn from a multivariate Gaussian distribution: .x ∼ 𝒩(0,In)



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals

• [Klivans, O’Donnell, Servedio 2008]  can be agnostically learned to 
accuracy  with an  polynomial approximation algorithm with  
samples.


• Can be implemented as an SQ algorithm that makes   queries of 
tolerance . 


• Question: Is this dependence on  optimal?

ℋk
ϵ L1 nO(log k)

nO(log k)

n−O(log k)

k



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals 
(Ctd.)
• [KOS 2008]  can be agnostically learned to accuracy  with   

queries of tolerance . 


• [Diakonikolas, Kane, Pittas, Zarifis 2021] To agnostically learn  to 
accuracy , either  queries are needed or at least one query of 
tolerance  is necessary.


• Question: Which bound has the correct dependence on ?

ℋk ϵ nO(log k)

n−O(log k)

ℋk
ϵ 2n0.1

≤ n−Ω̃( log k)

k



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals 
(Ctd.)
• [KOS 2008]  can be agnostically learned to accuracy  with   

queries of tolerance . 


• [DKPZ 2021] Requires either  queries or at least one query of tolerance 
.


• Our results: Requires either  queries or at least one query of tolerance 
.

ℋk ϵ nO(log k)

n−O(log k)

2n0.1

≤ n−Ω̃( log k)

2n0.1

≤ n−Ω̃(log k)



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals 
(Ctd.)

Minimum SQ complexity needed to agnostically learn intersections of  halfspaces.  k

[KOS ’08]: nO(log k)

[DKPZ ’21]: nΩ̃( log k)

[HSSV ’22 (?)]: nΩ̃(log k)



Related problems
• Realizably learning  with Gaussian marginals:


• [KOS ’08]  samples (  polynomial approximation)


• [Vempala ’10]  (PCA approach)


• Agnostically learning halfspaces ( ) with Gaussian marginals:


• [KKMS ’08]  samples


• [Ganzburg ’02] + [DKPZ ’21]  SQ complexity


• Learning  in distribution-free setting thought to be hard:


• [Klivans, Sherstov ’06] Cryptographic hardness results


• [Sherstov ’13] No efficient algos with polynomial threshold hypotheses for    

ℋk

nO(log k) L1

poly(n, k) + kO(log k)

ℋ1

n2 log(n)/ϵ2

nΩ(1/ϵ2)

ℋk

ℋ2



Near-Optimal Statistical Query Lower Bounds for Agnostically 
Learning Intersections of Halfspaces with Gaussian Marginals 
(Ctd.)

Minimum SQ complexity needed to agnostically learn intersections of  halfspaces.  k

[KOS ’08]: nO(log k)

[DKPZ ’21]: nΩ̃( log k)

[HSSV ’22 (?)]: nΩ̃(log k)



Proving an SQ lower bound
Reverse-engineering our result

• If there exists  with , then the 
SQ-dimension of  is at least .


• Any SQ algorithm that learns  to error  must make either  
queries or at least one query of tolerance .


• Intuition: If  for  cannot be approximated by low-degree 
polynomials, then  has high SQ-
dimension.


• Suffices to show existence of intersection of  halfspaces  that is nearly 
orthogonal to low-degree polynomials.

h1, …, hm ∈ ℋ |⟨hi, hj⟩ | = |𝔼[hi(x)hj(x)] | ≤ 1/m
ℋ m

ℋ 1/2 − m−1/3 Ω(m1/3)
O(m−1/3)

f : ℝk → {−1,1} k ≪ n
ℋ = {x ↦ f(Wx) : W ∈ ℝk×n, WWT = I}

Θ(k) f



SQ lower bounds on {±1}n

[Dachman-Soled, Feldman, Tan, Wan, Wimmer 2014]

•  is -resilient if for all  ( -degree polys), .


•  is -approximately -resilient if there exists  such that 
 and  is -resilient.


• [DFTWW14, Thm 1.1] For , if  is -approximately 
-resilient, then agnostically learning to excess error 

 requires either  queries or at least one query of tolerance .


• Lower bound on SQ dimension.


• [DFTWW, Thm 1.6] (read-once monotone DNF) is 
-approximately -resilient.


• Bounds on low-degree Fourier coefficients provide transform to resilient 
approximation.

f : {±1}k → [−1,1] d p ∈ 𝒫d d ⟨ f, p⟩ = 0

f α d g : {±1}k → [−1,1]
∥f − g∥1 = 𝔼x∼Unif({±1}k) | f(x) − g(x) | ≤ α g d

k = n1/3 f : {±1}k → {±1} α d
ℋ = {f(xS) : S ⊂ [n], |S | = k}

(1 − α)/2 nΩ(d) ≤ n−Ω(d)

Tribes : {±1}k → {±1}
O(k−1/3) Ω(log(k)/log log k)



Adaptation to 𝒩(0,In)
[Diakonikolas, Kane, Pittas, Zarifis 2021]

•  is -approximately -resilient if there exists  
such that  and .


• [DKPZ ’21, Prop 2.1]  is -approximately -resilient iff  for all 
.


• [DKPZ ’21, Thm 1.4] For , if  for all , then 
learning  to excess error  
requires either  queries or one query of tolerance .


• [DKPZ ’21, Thm 3.5] For ,   for all  for 
some .

f : ℝk → {−1,1} α d g : ℝk → [−1,1]
∥f − g∥1 ≤ α Lowd[g](x) = 0

f α d ∥f − p∥1 ≥ 1 − α
p ∈ 𝒫d

k = n0.1 ∥f − p∥1 ≥ 1 − α p ∈ 𝒫d
ℋ = {x ↦ f(Wx) : W ∈ ℝk×n, WWT = I} (1 − α)/2

2Ω(n0.1) n−Ω(d)

d = Ω̃( log k) ∥f − p∥1 ≥ 0.1 p ∈ 𝒫d
f ∈ ℋk



Our technical contributions:
Improving the approximate resilience bound

• .


•  chosen to have 
.


• Lemma:  is -approximately 
-resilient.


• Theorem: For , agnostically learning 
 to 

excess error  requires either  queries or 
one query of tolerance .

Cubek(x) = sign(θk − ∥x∥∞) = 2 max
i∈[k]

1{ |xi | ≤ θk} − 1

θk = Θ( log k)
𝔼x∼𝒩(0,Ik)[Cubek(x)] = 0

Cubek k−0.49 Ω(log(k)/log log k)

k = O(n0.49)
ℋ = {x ↦ Cubek(Wx) : W ∈ ℝk×n, WWT = I} ⊂ ℋ2k

(1 − k−0.49)/2 2O(n0.1)

n−Ω(log(k)/log log k)

2θk



Agnostically learning  requires 
SQ complexity 

ℋk
nΩ(log(k)/log log k)

DKPZ: Agnostically learning 
 with -approx degree 

 of  requires SQ complexity 
{x ↦ f(Wx)} L1

d f nΩ(d)

DKPZ: -approx degree  
iff -approx -resilient

L1 d
α d

 is -approximately 
-resilient

Cubek k−0.49

Ω(log(k)/log log k)

The low-degree Hermite 
coefficients of  are 

bounded
Cubek

is approximately 
resilient if its low-degree Hermite 

coefficients are bounded.

f : ℝk → {−1,1}



Hermite polynomials

• Multivariate probabilisist's Hermite polynomials  is an orthogonal basis for :


• 


• Hermite representation:  , for 


• Decomposition of : 


•  


•

{HJ}J∈ℕk L2(𝒩(0,Ik))

⟨HJ, HJ′￼
⟩ = 𝔼x∼𝒩(0,Ik)[HJ(x)HJ′￼

(x)] = J1! ⋅ … ⋅ Jk!1{J = J′￼}

f(x) = ∑
J∈𝒩k

f̃(J)HJ f̃(J) = ⟨ f, HJ⟩/ J!

f

Lowd[ f ](x) = ∑
|J|≤d

f̃(J)HJ(x)

Highd[ f ](x) = f(x) − Lowd[ f ](x) = ∑
|J|>d

f̃(J)HJ(x)



Bound on low-degree Hermite coefficients of cube

• 


• Lemma: 


• For , gives 


• Proof by exact computation of univariate Hermite coefficients of 
, bound by Stirling inequality and 

Cubek(x) = sign(θk − ∥x∥∞)

∥Lowd[Cubek]∥2
2 = ∑

|J|≤d

C̃ubek(J)2 ≤
(4 ln k)d

k

d = ln(k)/400 ln ln k ∥Lowd[Cubek]∥2
2 ≤ k−0.99

t ↦ 1{ | t | ≤ θk}
θk ∈ [ 2 ln k − ln(2 ln k), 2 ln k]



Approximate Resilience: Truncation Transform
•  is -approximately -resilient if there exists 

 such that  and .


• Goal: Transform  with small  to obtain bounded  that 
approximates  and is uncorrelated to low-degree polynomials.


• Idea #1: . 


•  🙂


•  😎


•  is not bounded 💀

f : ℝk → {−1,1} α d
g : ℝk → [−1,1] ∥f − g∥1 ≤ α Lowd[g](x) = 0

f ∥Lowd[ f ]∥2 g
f

g(x) := Highd[ f ](x)

∥g − f∥1 ≤ ∥Lowd[ f ]∥2

Lowd[g] = 0

g



Approximate Resilience: Truncation Transform
•  is -approximately -resilient if there exists 

 such that  and .


• Goal: Transform  to obtain bounded  that approximates  and is 
uncorrelated to low-degree polynomials.


• Idea #2:   

• For large ,  😐


• For large ,  🤢


•  😒

f : ℝk → {−1,1} α d
g : ℝk → [−1,1] ∥f − g∥1 ≤ α Lowd[g](x) = 0

f g f

g = Highd[ f ](x) ⋅ 1{ |Lowd[ f ](x) | ≤ η}

η ∥g − f∥1 ≤ 2∥Lowd[ f ]∥2

η ∥Lowd[g]∥2 ≤ ∥Lowd[ f ]∥2/a

∥g∥∞ ≤ 1 + η



Approximate Resilience: Truncation Transform
•  is -approximately -resilient if there exists 

 such that  and .


• Goal: Transform  to obtain bounded  that approximates  and is 
uncorrelated to low-degree polynomials.


• [DFTWW ’14]  

•  


• .


• 🧐

f : ℝk → {−1,1} α d
g : ℝk → [−1,1] ∥f − g∥1 ≤ α Lowd[g](x) = 0

f g f

h(x) = Highd[Highd[ f ] ⋅ 1{ |Lowd[ f ] | ≤ η}]

g(x) = h(x)/∥h∥∞



Approximate Resilience: Truncation Transform
•  is -approximately -resilient if there exists 

 such that  and .


• 


• Let  and  for .


• For some decaying  and , have (1) ,  
(2) ,  and (3) .


• By limit argument, exists  with (1) , (2) ,  
and (3) . Let .

f : ℝk → {±1} α d
g : ℝk → [−1,1] ∥f − g∥1 ≤ α Lowd[g](x) = 0

TruncHighd,η[ f ] = Highd[ f ](x) ⋅ 1{ |Lowd[ f ](x) | ≤ η}

f0 := f fi+1 = TruncHighd,ηi
[ fi] i → ∞

ηi α = k0.49 ∥fi+1∥∞ ≤ ∥fi∥∞ + α/(3 ⋅ 2i+1)
lim
i→∞

∥Lowd[ fi]∥ = 0 ∥fi+1 − fi∥1 ≤ α/(3 ⋅ 4i)

f* ∥f*∥∞ ≤ 1 + α/3 Lowd[ f*] = 0
∥f − f*∥1 ≤ 2α/3 g := f*/∥f∥∞



Agnostically learning  requires 
SQ complexity 

ℋk
nΩ(log(k)/log log k)

DKPZ: Agnostically learning 
 with -approx degree 

 of  requires SQ complexity 
{x ↦ f(Wx)} L1

d f nΩ(d)

DKPZ: -approx degree  
iff -approx -resilient

L1 d
α d

 is -approximately 
-resilient

Cubek k−0.49

Ω(log(k)/log log k)

 
ensures that , 

 bounded,  small

f0 = f, fi+1 = TruncHighd,ηi
[ fi]

∥Lowd[ fi]∥2 → 0
fi ∥f − fi∥1

Exists  that 

witnesses approximate 
resilience of 

f* = lim
i→∞

fi

f

The low-degree Hermite 
coefficients of  are 

bounded
Cubek

is approximately 
resilient if its low-degree Hermite 

coefficients are bounded.

f : ℝk → {−1,1}



What else is there?

• Second proof for larger  (rather than ) bounds on  
approximate degree of random intersection of halfspaces.


• Based on hardness of weak-learning intersections of halfspaces with 
membership queries [De, Servedio 2021] 

• Dependence on accuracy :  bound by augmenting 
construction with a single centered halfspace [Ganzburg 2002] 

• Optimality of learning families with Gaussian surface area  with  
polynomial approximation: SQ complexity of , vs  [KOS 2008]

k = 2O(n0.245) k = O(n0.49) L1

ϵ nΩ(log(k)/log log k+1/ϵ2)

≤ s L1

nΩ(s2/log s) nO(s2)



Thanks!


