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Why are we doing this?
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Mean temperature change [°C]
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Why are we doing this?
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Western North America temperature and -
precipitation

Models have less agreement about future
local precipitation trends compared to
temperature. This matters!




ML Goal: Improve coarse-model simulations

High fidelity reference

reanalysis or Climate model (25-200 km)
fine-grid (~3km) simulation

Use machine learning to
make coarse model behave
more like reference
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Corrective approach

e Our approach:
1. Nudge coarse-resolution model towards reference dataset
2. Train ML to predict nudging tendencies with input coarse-res state
3. Run coarse-res model, with ML corrective tendency at each step
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Limitations of corrective approach

e ML corrective tendencies inaccurate & unstable outside training dataset
e Simulationis an online process — regularly produces out-of-sample data
e Thus, ML-corrected simulations crash frequently & behave erratically

o Especially when including wind in ML corrections
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Stabilization with novelty detection

e |dea: If simulation drifts out-of-sample, disable ML correction
e Novelty detection is a branch of self-supervised learning that predicts
whether a sample belongs to a distribution given draws from distribution
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One-Class Support Vector machine (OCSVM)

Idea: Directly estimate support of S sllwl® + 50 X6 —»
distribution by identifying compact region subjectto (w- ®(x;)) > p— &, & > 0.
that contains all samples
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Our findings

e e e

e |ncorporating novelty detection with a One-Class SVM prevents runs from’
crashing and improves temperature and humidity predictions over
simulations with and without ML correction

Time-averaged near-surface temperature biases

Baseline model Regular ML-corrected ML-corrected model with
(no ML correction) model novelty detection




Our findings

e |ncorporating novelty detection with a One-Class SVM prevents runs from’
crashing and improves temperature and humidity predictions over
simulations with and without ML correction

Run % Novelty T (K) SP (mm/day) PWAT (kg/m?)
1 Baseline (1) 100% 2.09 1.78 2.79
2 ML-corrected (2) with grq 0% 1.86 1.43 3.31
3 ML-corrected with grquy (*) 0% 2.43 3.39 5.33
4 ND ML (3) with grq, fr.ocsvm  2.5% 1.97 1.49 3.65
5 ND ML with grquy, 77 minmax 35.7%  5.15 3.57 10.14
6 ND ML with grquv,7r,0csVvM 40.0% 1.58 1.40 2.66
7 ND ML with grquv, 'rq,0c8VM 50.7% 1.53 1.24 2.37
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