Improving the predictions of ML-corrected climate models with novelty detection

Clayton Sanford, Anna Kwa, Oliver Watt-Meyer, Spencer Clark, Noah Brenowitz, Jeremy McGibbon, Christopher Bretherton

Allen Institute for Artificial Intelligence, Seattle, WA

103rd AMS Annual Meeting Climate Science Insights from Artificial Intelligence

Why are we doing this?

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x</t

and the second second

Western North America temperature

IPCC AR6 Atlas (CMIP6 models)

A12

Why are we doing this?

Western North America **temperature** and **precipitation**

Models have **less agreement** about future local precipitation trends compared to temperature. This matters!

ML Goal: Improve coarse-model simulations

High fidelity reference

reanalysis or fine-grid (~3km) simulation

Use machine learning to make coarse model behave more like reference

Climate model (25-200 km)

Corrective approach

- ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 ...
 ...
- 1. Nudge coarse-resolution model towards reference dataset
- 2. Train ML to predict nudging tendencies with input coarse-resolution state
- 3. Run coarse-resolution model, with ML corrective tendency at each step

Limitations of corrective approach

 x
 x
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y</t

- ML corrective tendencies inaccurate & unstable outside training dataset
- Simulation is an online process and can produce out-of-sample data

ML-corrected simulations behave erratically & perform poorly (especially when winds included)

time Training dataset support

• Novelty detection is a branch of self-supervised learning that prédicts whether a sample belongs to a distribution given draws from distribution

• Novelty detection is a branch of self-supervised learning that predicts whether a sample belongs to a distribution given draws from distribution

Training sample

• Novelty detection is a branch of self-supervised learning that prédicts whether a sample belongs to a distribution given draws from distribution

Training sample New sample: Novelty New sample: In-distribution

• Novelty detection is a branch of self-supervised learning that prédicts whether a sample belongs to a distribution given draws from distribution

Training sample New sample: Novelty New sample: In-distribution

- Novelty detection is a branch of self-supervised learning that prédicts whether a sample belongs to a distribution given draws from distribution
- Idea: If simulation drifts out-of-sample, disable ML correction

One-Class Support Vector machine (OCSVM)

- Idea: Directly estimate support of distribution by identifying compact region that contains all samples
- Maximize distance between dataset $\{x_1, ..., x_n\} \in \mathbb{R}^d$ and the origin under feature mapping $\Phi: \mathbb{R}^d \to F$
- Radial basis function (RBF) kernel
- Alternatives: covariance estimation, local outlier factor, other kernels

 $\min_{\substack{w \in F, \boldsymbol{\xi} \in \mathbb{R}^{n}, \rho \in \mathbb{R} \\ \text{subject to}}} \frac{\frac{1}{2} ||w||^{2} + \frac{1}{\nu n} \sum_{i} \xi_{i} - \rho}{(w \cdot \Phi(\mathbf{x}_{i})) \ge \rho - \xi_{i}, \ \xi_{i} \ge 0.}$

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

• OCSVM novelty detection improves temperature and precipitation for the predictions over baseline and ML-corrected simulations

OCSVM novelty detection improves temperature and precipitation for a predictions over baseline and ML-corrected simulations

Time-averaged Near-surface Temperature Bias [K]

OCSVM novelty detection improves temperature and precipitation predictions over baseline and ML-corrected simulations

Time-averaged Surface Precipitation Rate Bias [mm/day]

Our findings

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 .

• OCSVM novelty detection improves temperature and precipitation for predictions over baseline and ML-corrected simulations

	Run	T (K)	$SP \ (mm/day)$	PWAT (kg/m^2)
1	Baseline (1)	2.09	1.78	2.79
2	ML-corrected (2) with $g_{\rm Tq}$	1.86	1.43	3.31
3	ML-corrected with g_{Tquv}	2.43	3.39	5.33
4	ND ML (3) with g_{Tq} , $\eta_{T,OCSVM}$	1.97	1.49	3.65
5	ND ML with $g_{\text{Tquv}}, \eta_{\text{T,minmax}}$	5.15	3.57	10.14
6	ND ML with $g_{\text{Tquv}}, \eta_{\text{T,OCSVM}}$	1.58	1.40	2.66
7	ND ML with $g_{\text{Tquv}}, \eta_{\text{Tq,OCSVM}}$	1.53	1.24	2.37

Conclusion

- Developed a pipeline for incorporating novelty detection into an ML-corrected climate model.
- Novelty detection improves temperature & humidity prediction of coarse-grid ML-corrected climate models.
- Future work: build on this proof-of-concept and experiment with other novelty detectors, parameters, and ML correction approaches.
- A version of this appeared at the NeurIPS 2022 "Tackling Climate Change with ML" workshop and is on arXiv. Check it out →
- Submission planned to JAMES journal, with some experimental changes due to upstream bug fix.

1	1	1	1	1	1	1	1	1	1
			1			1	1	1	1

A12