A distributed computing lens on
transformers

Clayton Sanford
April 9th, 2024

Google Research

Talk outline

1. [2 minutes] Introduction
[10 minutes] Overview of transformer architecture and theoretical results
[15 minutes] Equivalence between transformers and distributed computing

[10 minutes] Empirical study of powers of log-depth transformers

o k&~ L DN

[10 minutes] Implications for sub-quadratic attention and state-space
models

6. [5 minutes] Follow-up projects as an OMEGA SR

My research

Core goal: Understand neural net architectural trade-offs and inductive biases.

1. Feedforward NN expressivity:
Effects of depth, weight-regularization, random features on representational powers.

2. Learning low intrinsic-dimensional data:
Optimization results for two-layer NNs, analysis of inductive biases.

3. Capabilities of sequential modeling architectures:
Effects of model size and architecture choice among transformers and state-space
models.

4. Interdisciplinary work:
Climate modeling + ML.

Transformers overview

Transformer architecture

 Sequence-to-sequence architecture

 Backbone of modern large language models

 Replaced RNNs and LSTMs as state-of-the-art
for NLP

 Characteristics:

e Highly parallelizable
e Core primitive: associative self-attention units

» Scalable to long context length (32K GPT-4,
100K Claude, 1M Gemini) il e e vasitens 4 ot i

Rogers et al 20

e Quadratic computational bottleneck

5

Motivating questions

Practical questions Theoretical questions
1. Are sub-quadratic attention 1. Representational impacts of
models and state-space models embedding dimensions and
(SSMs) as powerful as standard depth?
transformers? . .
2. Separations with other models
2. Can transformers solve (RNNs, GNNs, sub-gquadratic
compositional tasks in a size- attention)?

efficient manner? o
3. Fundamental limitations of

transformers?

Transformer architecture

e Self-attention unit:
A(X) = softmax(XOK' XHXV
for input X € R4
model parameters O, K, V € | axm

XV

RN Xm

e Multi-headed attention:

H
gX) =X+) fiX)
h=1

 Element-wise multi-layer perceptron

(MLP): p(X) = (¢(xy), ..., P(xy))

 Full transformer:
I(X) = (¢pro8r°---°81° Pp)X)

Our Contributions

o 2-way relationship between transformers
and Massively Parallel Computation
(MPC) distributed computing model.

= [ransformers can implement
parallelizable algorithms (theoretically
and empirically).

U o O

‘ ‘ = machine \ = communication

= Certain tasks require sufficient depth.

= = synchronization

uuuuuuuuuuuuu

* Other models (SSMs, GNNs, some sub-
quadratic models) correspond to serial
“blackboard communication protocols.”

= Separation between transformers and
others on parallelizable tasks.

Transformers +
Massively Parallel Computation

Takeaway: Computational equivalence between
transformers and MPC

Parallelizable Tasks?

 Example: Graph connectivity

» Given graph G = (V, E), determine /

whether G is connected.

 Solvable by DFSin O(| V| + | E|)
time.

Parallelizable Tasks?

 Example: Graph connectivity

» Given graph G = (V, E), determine
whether G is connected.
 Solvable by DFSin O(| V| + | E|)

time.

o Parallel algorithm in O(log | V|)
rounds.

Parallelizable Tasks?

 Example: Graph connectivity

» Given graph G = (V, E), determine
whether G is connected.

 Solvable by DFSin O(| V| + | E|)
time.

o Parallel algorithm in O(log | V|)
rounds.

Parallelizable Tasks?

 Example: Graph connectivity

» Given graph G = (V, E), determine
whether G is connected.

 Solvable by DFSin O(| V| + | E|)
time.

o Parallel algorithm in O(log | V|)
rounds.

Parallelizable Tasks?

 Example: Graph connectivity

» Given graph G = (V, E), determine
whether G is connected.

 Solvable by DFSin O(| V| + | E|)
time.

o Parallel algorithm in O(log | V|)
rounds.

Parallelizable Tasks?

 Example: Graph connectivity

» Given graph G = (V, E), determine
whether G is connected.

 Solvable by DFSin O(| V| + | E|)
time.

o Parallel algorithm in O(log | V|)
rounds.

o Computational model for tasks
solvable with algorithms of this form?

Massively Parallel Computation (MPC)
(not Multi-Party Computation)

« MPC = theoretical model of MapReduce

» A distributed protocol is MPC on size-N input of O(log N)-bit words if:
. ¢ machines, each with local memory s = N1
. Global memory gs < N1

 Each of r rounds, machines perform parallel computation and
send/receive messages simultaneously.

 Unbounded computation, total size of messages sent and received per
machine < .

16

Massively Parallel Computation (MPC)
Examples [Andoni, Song, Stein, Wang, Zhong 18]

« Graph connectivity for | E| = N is solvable in
R = O(log N) rounds, g = O(/N) machines,
s = O(N'O1) local memory.

* Other graph problems: minimum spanning forest,
diameter estimation.

 One-cycle vs two-cycle conjecture:
Distinguishing cycle graphs of size /V from two

cycles of size N/2 with g = poly(N) machines and
s = o(N) local memory requires R = 2(log N)
rounds.

17

P
Our results — G0 0r
=) U U
e > 5 0 0 O
EEESSEZET; 2 o:_t® g’iﬁﬁﬂz ‘ = machine \=Communication
Embefjdmg QutLu;s mmmmmss = Synchronization
Theorem 1: Transformers Theorem 2: MPC protocols
simulate MPC protocols. simulate transformers.

v v

Transformers require log-depth to
solve connected components under
conjecture.

Log-depth Transformers can
solve connected components

* GNNs, RNNs, sub-quadratic
attention models require poly-depth!

Simulating MPC with transformers

Theorem 1: Any R-round MPC protocol with s = N? local memory and
g < N machines can be simulated by a transformer with depth L = O(R)
and width m = O(N™).

* Proof idea:
e Simulate local computation on in each MLP.

 Route information between each machine using message passing-
encoded self-attention layer.

* Main technical challenge: Error correction via copies of messages in
sparse locations on value vector XV.

Simulating MPC with transformers

Theorem 1: Any R-round MPC protocol with s = N? local memory and
g < N machines can be simulated by a transformer with depth L = O(R)
and width m = O(N™).

 Encode outgoing messages from each machine as repeated “packets” in
value vector X'V.

« Encode destination of messages in query vector XO.

e Sparse averaging results of [S, Hsu, Telgarsky ‘23] compute averages of
all packets received by each input.

 Decode received average of value vectors, which is possible due to
redundancy of packet structure.

Machine 1 Sy = (0,2) Machine 0
<1
Q Src | Dest | Msg
1 1 0 hey
Sentq
0
Dest | Msg
¢ 1 1 2 yo :
0 | hey | —p» Machine 2
0
2 yo
1 1 0 hey 2Y; = 2 - sparsePropagate((z, .5))s
0 = 21 + 23
1 1 2 yo 20 | 28rc |2Dest | 2Msg
1 0 hey
1 yes Rcvdsy
2 asd Src | Msg
: (0
Machine 3 S5 = (2,4) 1 N0 | e yo
23 9 WyZ yes
& | Src | Dest | Msg 0
0 1 1 2 yo
Sents
1 3 2 yes
Dest | Msg
¢ 1 3 2 | vyes
2 | yes | e———pp
A 1 3 4 no
no 5
1 3 4 no Machine 4
0
0

Simulating MPC with transformers

Theorem 1: Any R-round MPC protocol with s = N? local memory and
g < N machines can be simulated by a transformer with depth L = O(R)

and width m = OQ(N°+T0-0001),

* Improvement while at Google Research!

Transformers solve parallelizable algorithms

Theorem 1: Any R-round MPC protocol with s = N? local memory and

g < N machines can be simulated by a transformer with depth L = O(R)
and width m = O(N° 00901,

Problem MPC Transformer
.. s = O(N0-01), _ _ 0.02
Graph connectivity R = O(log N). L =0(og N), m = O(N0-02),
- - S = O(N()'Ol)! — — 0.02
Min spanning forest R = O(log N). L =0(log N), m = O(/N0-02),
s = O(NO31),

L or NL Problems L =0(log N), m = O(N0-52),

R =0O(log N).

Simulating transformers with MPC

Theorem 2: Any transformer with depth L and width m = NP can be
simulated by an O(L/5)-round MPC protocol with ¢ = O(N?) machines and
s = N*° local memory.

» Key limitation: quadratic scaling in global memory.

* Proof idea: Simulate each layer with “embedding machines” and “inner
product machines”

Simulating transformers with MPC

Theorem 2: Any transformer with depth L and width m = NP can be
simulated by an O(L/5)-round MPC protocol with ¢ = O(N?) machines and
s = N*° local memory.

Optimality of parallel implementation

Theorem 2: Any transformer with depth L and width m = N° can be
simulated by an O(L/)-round MPC protocol with ¢ = O(N?) machines
and s = N°° local memory.

 Assuming 1-cycle vs 2-cycle conjecture:

= [ransformers computing diameter graph connectivity require

m > N"* or L = Q(log N). t

|
Our results {58 p
J) O L
—_—
)) O U
= machine \ = communication
Theorem 1: Transformers Theorem 2: MPC protocols
simulate MPC protocols. simulate transformers.

v v

Transformers require log-depth to
solve connected components under
1-cycle vs 2-cycle conjecture.

Log-depth Transformers can
solve connected components

Empirics +
Mechanistic Interpretability

Takeaway: Parallelizable theoretical constructions are
learnable and interpretable

Induction heads and powers of depth

* Task: Complete most recent matching bigram:

- IH(daccabcddca)y =D tayer2 [« [« [[+] uy(®) [ws(o)
Attn2: 3, wl(k)wE(zf)_T WgWa S, wy(k)ywg (k)T
* Occurs frequently as primitive in trained transformers . o e -
. ayer * wg(a wila) | wg * wg(a
[Anthropic] . x
© ,‘5" T Residual » Prediction
— Attnl: > ps_1p, !
« Natural construction with 2 layers [Bietti et al, 23]: o [T] T e Ton@
1 1 1 v
« Layer 1: identify previous token e L8 ” o : b
[BCBJB23]

* Layer 2: find most recent occurrence of token

* |Impossible with 1 layer

* Simple communication complexity proof

Multi-hop induction heads and powers of depth

Task: k-hop induction heads: Transformer theory results

hop(...qa,...a;,_1qy...a10,...01)) = a; 1. O(log k)-depth constructions.

2. CQ(log k) depth lower bounds
baebc'é?t)‘efbﬁa. (C(()ndgiti())naDI_D

log(k)-depth
construction

Task: k-hop induction heads:

hop,(...aqiapyq...ar_1ay...a105...0;) = Qi1

baeb c’a\b@a.

Theorem: There exists a
transformer with depth

L =2 4+ log k and width
m = O(1) computing hop;,.

* * *
N . o . - .m -

31

Learnability with
gradient descent

Task: k-hop induction heads:
hOpk(. .akak_H .o .ak_lak. . .alaz. . .al) — Clk_l_l
Empirical setting:

* Curriculum learning mixture of
hop,, k € {0,1,...,16},

4 distinct tokens.

 Small GPT2 models: m = 128,
H=4,Le {2,3,4,5,6},
N = 100.

* Jraining: 100K steps of Adam.

32

Depth L

0.0 A

~ - 0.01 0.14 [0.35 SRV

m -0.003 0.008 0.048 0.15 0.28

< -0.001 0.003 0.005 0.015 0.034 0.062 0.11 0.22 0.28 0.4 047 0.53 0.53 0.58 0.61
un -0.001 0.001 0.001 0.003 0.012 0.015 0.017 0.037 0.058 0.1 0.15 0.22 0.28 0.34 0.41
o- 0 0O 0.001 0.002 0.003 0.003 0.007 0.006 0.007 0.01 0.011 0.012 0.021 0.027 0.035 0.062
I I I I I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

Sharp learnability threshold
at L = log,(k) + 2

Evaluation of L-depth, 4-headed, infinite-sample intransformers on hopg

0.54 0.59

0.62

0.66 0.69 0.69 0.71 0.72 0.73 0.73 0.74 0.74

0.42 046 0.52 057 0.6 0.64 0.67 0.67 0.69 0.71

- 0.3

-0.2

-0.1

-0.0

Learnability
with gradient
descent

Task: k-hop induction heads:
hop,(...aqua1 ... a4_1Gs...010,...a1) = Gy
Empirical setting:

e Curriculum learning
mixture of hop,,

ke {0,1,...,16},

4 distinct tokens.
e Small GPT2 models:

m= 128, H =4,
Le {2,3,4,5,6},
N = 100.

* Jraining: 100K steps of
Adam.

Self-attention head interpretability:
Attention matrix: hops, L = 6, layer 6, head 1

Highlighting: hopg indices

33

Self-attention head interpretability
Attention matrix: hops, L = 6

Inner products with hop; indices

Learnability

With gradient 222 0.16 0.09 0.05 0.03 0.02 0.017 o0.01
descent -

Task: k-hop induction heads:
hop,(...aqua1 ... a4_1Gs...010,...a1) = Gy
Empirical setting:

e Curriculum learning
mixture of hop,,

ke {0,1,...,16},

024 0.08 0.05 0.02 0.01 0.01
0.06 0.0

0.08 0.22 0.06 0.06 0.02 0.01
0.92 0.0

0.93

0.93

0.26 0.06 0.07 0.03 0.03 0.03
021 0.14 013 006 004 0.02

0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01

0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02
0.01 0.01 0.01 0.01

- L 014 011 0.08 0.05 003 002 001 001 001 001 001 001 001 001 001 0.01 — 0.4
4 distinct tokens. 0.07 0.06
0.93
e Small GPT2 models: 004 004
nm = 128, H = 4, 0.03 0.01 N
0.02 0.9 0.01 e
L E {2’3’4’5’6}’ 0.02 0.07 0.03
N = 100. 0.02 0.01 0.12% 0.04
o 003 001 0.14 0.13
* Jraining: 100K steps of 0.01 0.01 001 0.01 0.04 0.02
~ 0.0

Adam.

1 2 3 ‘. S} 6

7 8 9 10 M1 12 13 14 15 16
J

Limitations of Alternative
Architectures

Takeaway: Other architectures relate to other distributed
computing models, which limits their capacity

Graph Neural Networks (GNNs) + CONGEST

* [Loukas ’19] relates GNNs to CONGEST distributed computing model.

 CONGEST: Fixed communication graph, each node sends
simultaneous O(log N)-bit messages to neighbors.

 Bounded message size GNNs can be simulated by CONGEST.
= GNNs require LA/ m = Q(\ﬁ\/) for subgraph connectivity.

» vs depth L = log(N) and width m = NV for transformers.

Blackboard communication protocols

 “Bounded-communication parallel model”

» k players P, ..., P, each receive N/k input tokens.

* |n each round, each player writes s bits of
information to the blackboard in the order Py, ..., P,.

o After r rounds, P, returns an answer.

* Theorem [GMO09]: A blackboard protocol that solves
hop, requires r > kor s = Q(N/k®).

» Standard pointer chasing lower bound.

e Think: k = NVOL

State-space models and linear-time attention

» [-layer m-width multi-pass RNNs can be simulated by
an L-round m-size protocol.

= Multi-layer RNNs require depth L > k or memory

m = Q(N/k®) to solve hop,. (Similar results for
LSTMs, Mamba.)

- - e e o e . o e . o . ey,

» [-layer, m-embed. dim., H-head, r-feature dim. ¥/ e
: : : I

Performers can be simulated by an L-round mm’H-size | | ,., | |=|, ./ =
protocol. / i

attention mechanism

LT S

= Performers require L > k or mrH = Q(N/k°) to

solve hop,. (Similar results for all kernel-based
models and Longformer)

. O(Lrd)

L ><7" S8 rx L &3 L xd
. (K"

'\\Q’ _________________ V.

Big Idea

e Separation between transformers and alternative models:

* [ransformers are highly parallelizable and can solve tasks like
connectivity and multi-hop induction heads with log depth.

 Other models are not highly parallelizable and must compress their

memory of the problem in each computational step, which makes
these tasks hard.

Extensions at Google Research

Follow-up projects

“Attend like a graph”
(Bahar Fatemi, Bryan Perozzi, Jonathan Halcrow, Vahab Mirrokni)

¢ ConteXt: Recent “Talk Like a Graph” and N Let Your Graph DO the Gdgscribesggraphamonanrc?dn;Fs)tO,1,2,3,4,5,6,7,and8.
Talking” papers from OMEGA team benchmarked graph reasoning oo comeseatonoes zanas —
taSkS With trained LLMS_ 6uestion:Whatisthedegreeofnode4?

* Question: Does this framework for transformers provide insight on graph reasoning??

e Qutcomes:

 Experimental results: advantages for vanilla transformers over GNN-based models on
tasks with “global structure” (e.g. connectivity).

* Theory results: improvement of MPC reduction and more complete hierarchy of graph
reasoning representational results (e.g. triangle counting and shortest path).

Follow-up projects

Unconditional depth lower bounds
(Jieming Mao, Jon Schneider, Vahab Mirrokni)

» Context: No existing unconditional negative results for w(1)-depth transformers.

» Question: Is there some task for which ®(log N)-depth is necessary and
sufficient?

e OQutcomes:

» Designed “acausal k-hop induction heads” task likely requires depth €2(k);
iInformation theoretic proof draft that furthers connection to pointer chasing.

- Empirical validation of hardness of this task vs standard hop,.

|
Our results {58 p
J) O L
—_—
)) O U
= machine \ = communication
Theorem 1: Transformers Theorem 2: MPC protocols
simulate MPC protocols. simulate transformers.

v v

Transformers require log-depth to
solve connected components under
1-cycle vs 2-cycle conjecture.

Log-depth Transformers can
solve connected components

* GNNs, RNNs, sub-quadratic
attention models require poly-depth!

