A distributed computing lens on transformers Clayton Sanford April 9th, 2024

Google Research

Talk outline

- 1. [2 minutes] Introduction
- 2. [10 minutes] Overview of transformer architecture and theoretical results
- 3. [15 minutes] Equivalence between transformers and distributed computing
- 4. [10 minutes] Empirical study of powers of log-depth transformers
- 5. [10 minutes] Implications for sub-quadratic attention and state-space models
- 6. [5 minutes] Follow-up projects as an OMEGA SR

My research

Core goal: Understand neural net architectural trade-offs and inductive biases.

- **1. Feedforward NN expressivity:**
- 2. Learning low intrinsic-dimensional data: Optimization results for two-layer NNs, analysis of inductive biases.
- 3. Capabilities of sequential modeling architectures: models.
- 4. Interdisciplinary work: Climate modeling + ML.

Effects of depth, weight-regularization, random features on representational powers.

Effects of model size and architecture choice among transformers and state-space

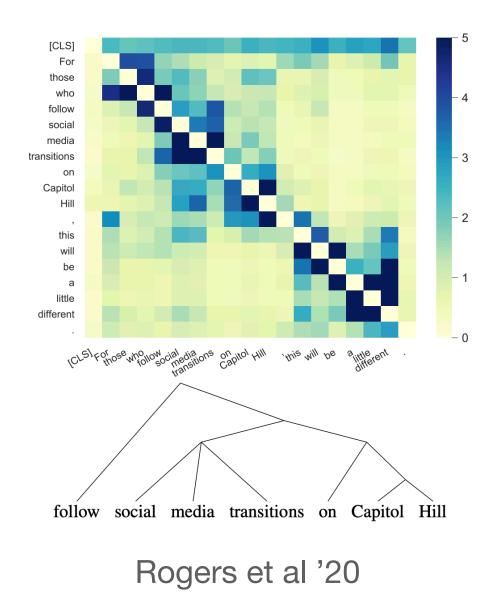
Transformers overview

Transformer architecture

- Sequence-to-sequence architecture
- Backbone of modern large language models
- Replaced RNNs and LSTMs as state-of-the-art for NLP
- Characteristics:
 - Highly parallelizable
 - Core primitive: associative self-attention units
 - Scalable to long context length (32K GPT-4, 100K Claude, 1M Gemini)
 - Quadratic computational bottleneck

Forward Encodina Output Embeddin

Vaswani et al '17



Motivating questions Practical questions

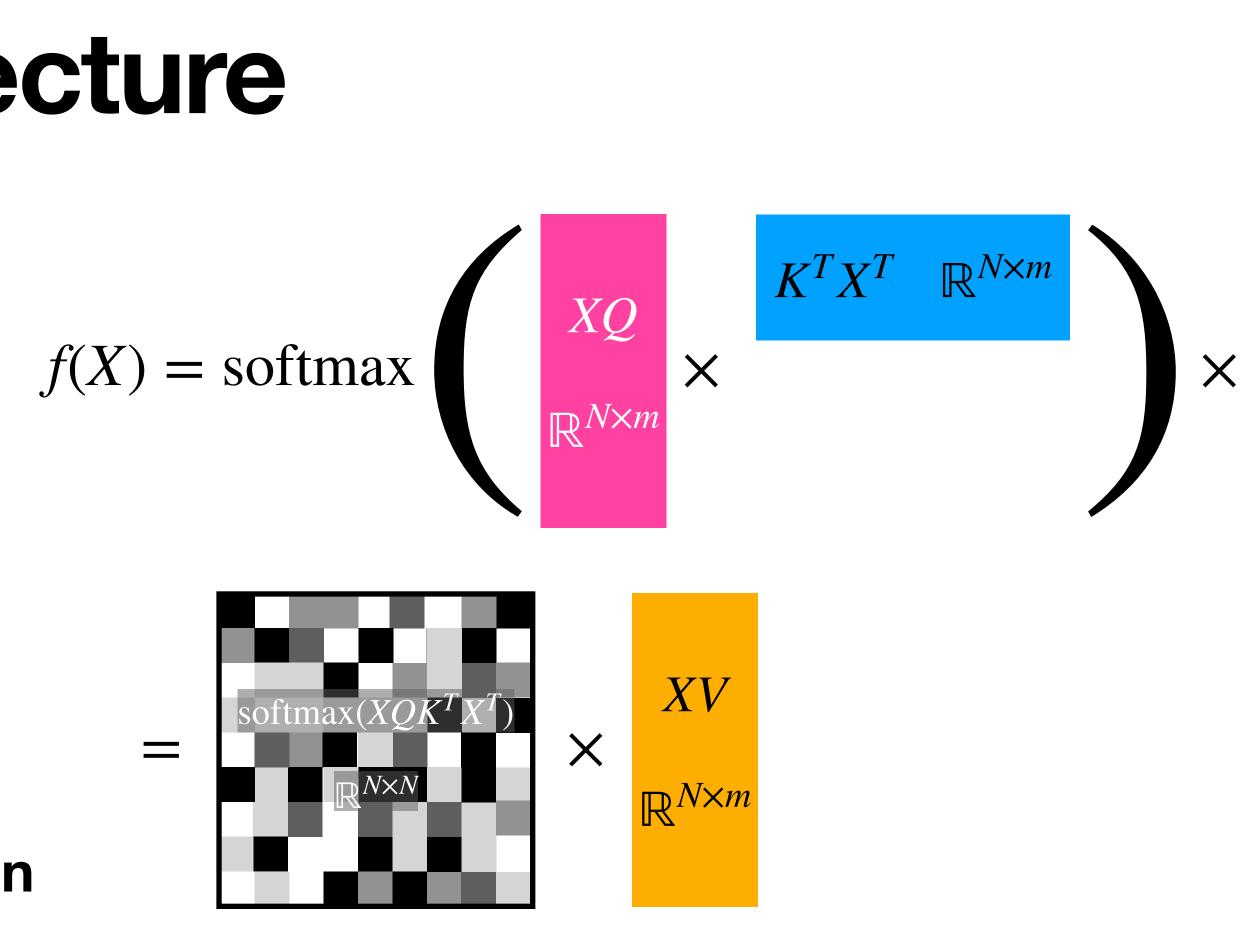
- Are sub-quadratic attention models and state-space models (SSMs) as powerful as standard transformers?
- 2. Can transformers solve compositional tasks in a size-efficient manner?

Theoretical questions

- Representational impacts of embedding dimensions and depth?
- 2. Separations with other models (RNNs, GNNs, sub-quadratic attention)?
- 3. Fundamental limitations of transformers?

Transformer architecture

- Self-attention unit:
- $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention: $g(X) = X + \sum_{h=1}^{H} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_L \circ g_L \circ \dots \circ g_1 \circ \phi_0)(X)$

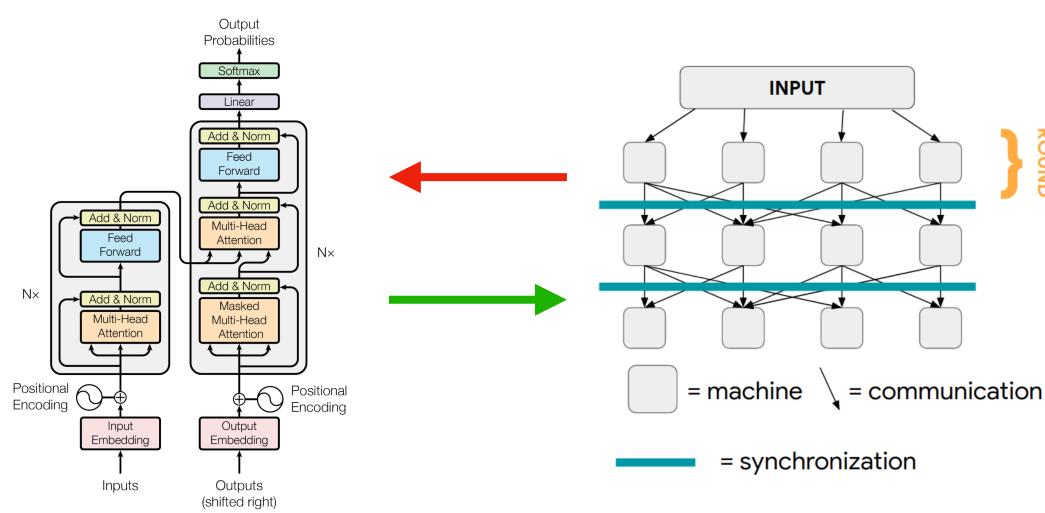


Our Contributions

- 2-way relationship between transformers and Massively Parallel Computation (MPC) distributed computing model.
 - Transformers can implement parallelizable algorithms (theoretically and empirically).

Certain tasks require sufficient depth.

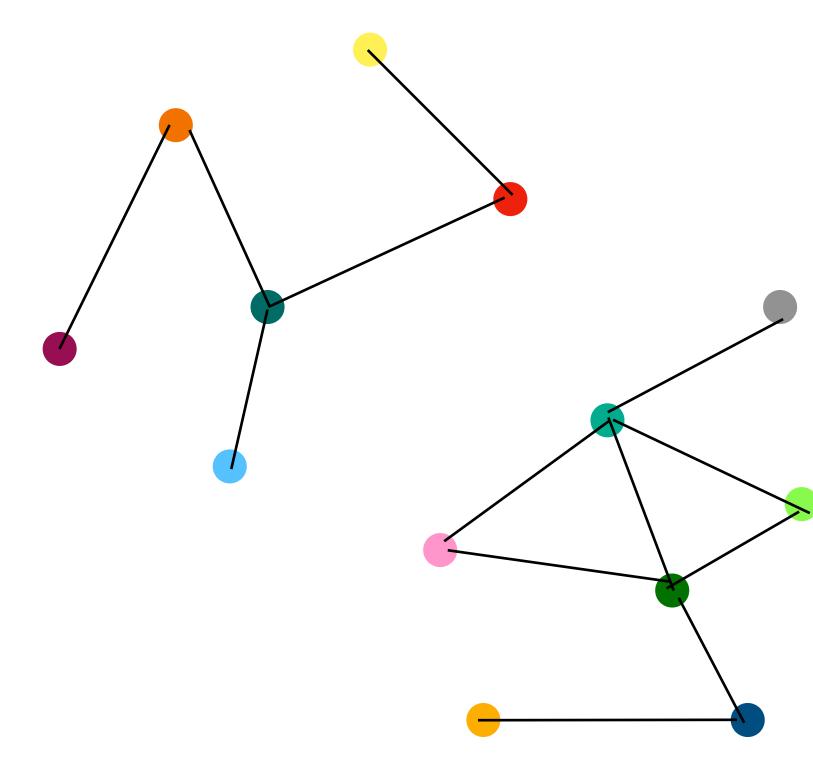
- Other models (SSMs, GNNs, some subquadratic models) correspond to serial "blackboard communication protocols."
 - Separation between transformers and others on parallelizable tasks.



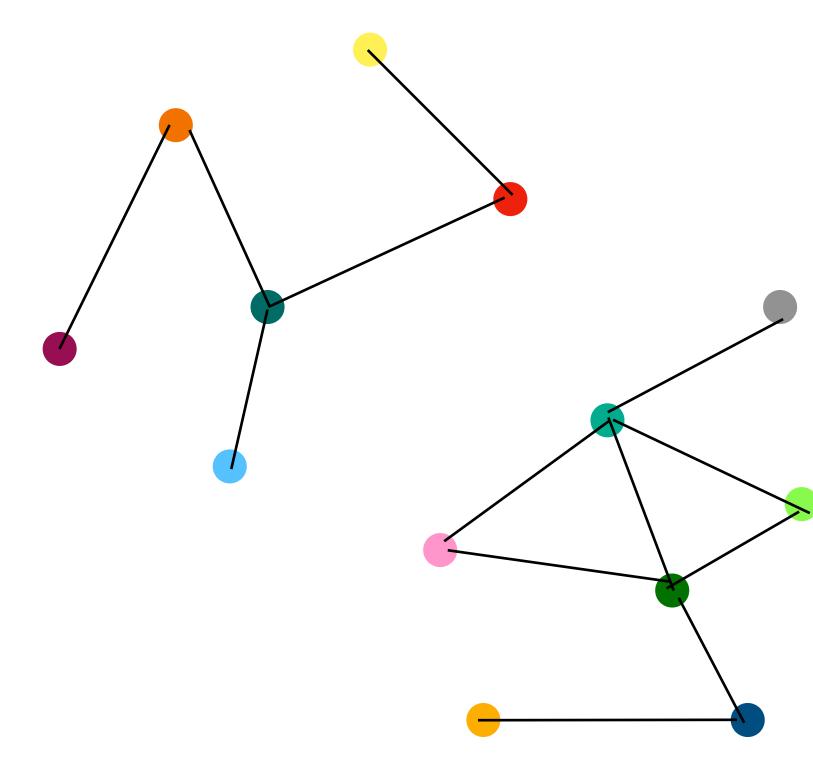
Transformers + Massively Parallel Computation

Takeaway: Computational equivalence between transformers and MPC

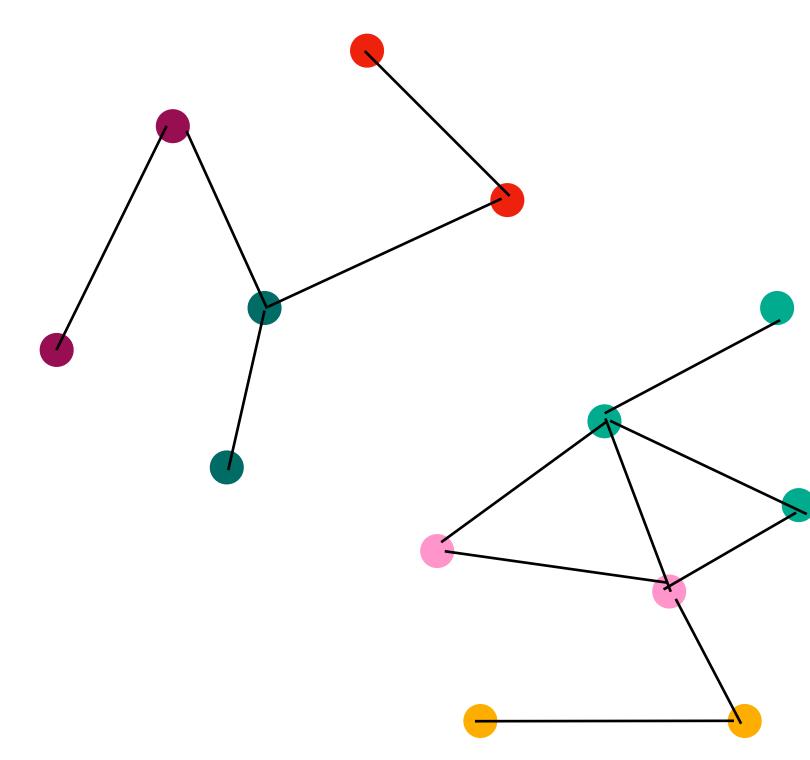
- Example: Graph connectivity
 - Given graph G = (V, E), determine whether G is connected.
 - Solvable by DFS in O(|V| + |E|)time.



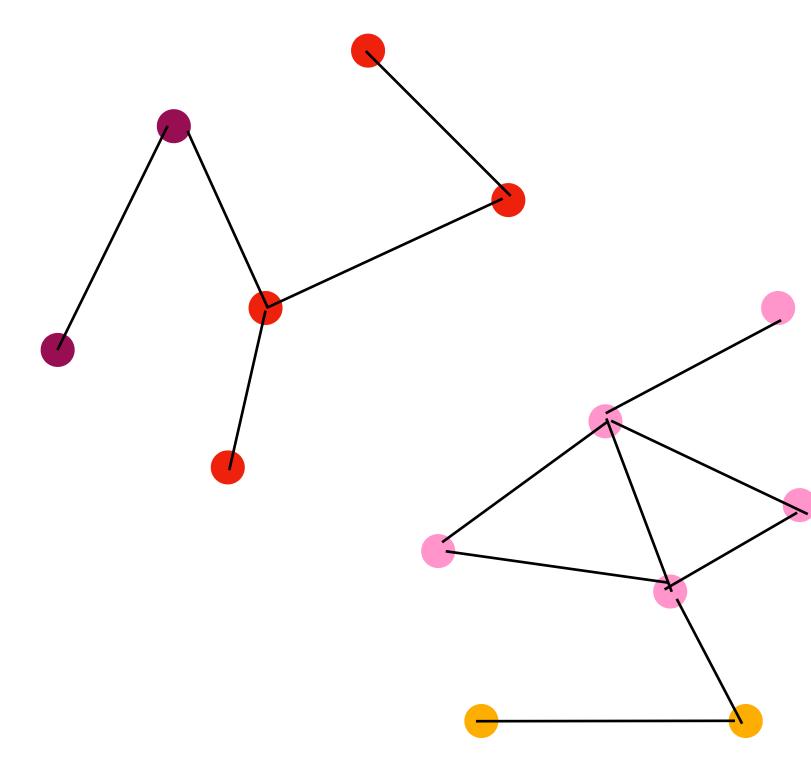
- Example: Graph connectivity
 - Given graph G = (V, E), determine whether G is connected.
 - Solvable by DFS in O(|V| + |E|)time.
 - Parallel algorithm in $O(\log |V|)$ rounds.



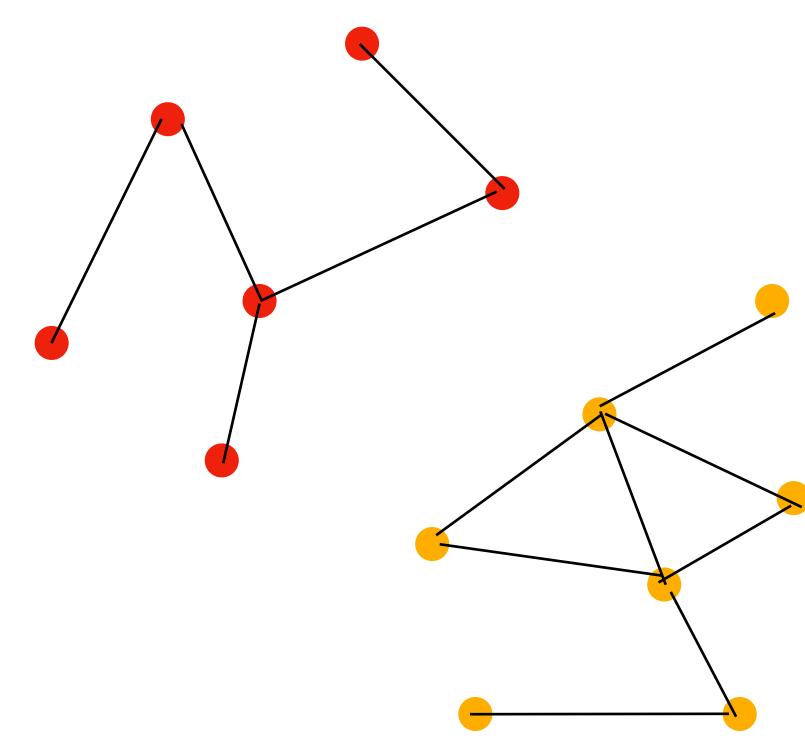
- Example: Graph connectivity
 - Given graph G = (V, E), determine whether G is connected.
 - Solvable by DFS in O(|V| + |E|)time.
 - Parallel algorithm in $O(\log |V|)$ rounds.



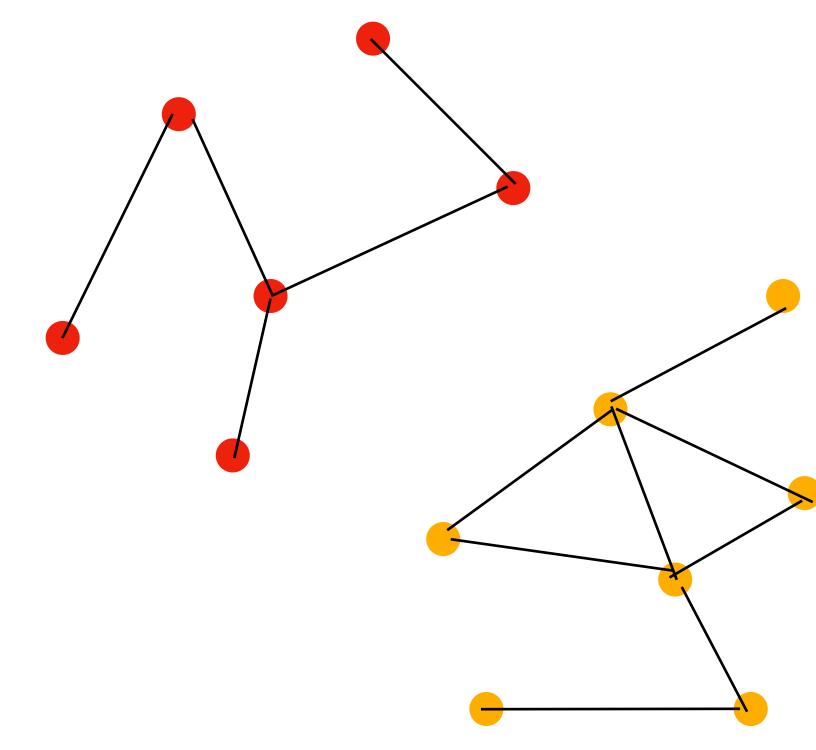
- Example: Graph connectivity
 - Given graph G = (V, E), determine whether G is connected.
 - Solvable by DFS in O(|V| + |E|)time.
 - Parallel algorithm in $O(\log |V|)$ rounds.



- Example: Graph connectivity
 - Given graph G = (V, E), determine whether G is connected.
 - Solvable by DFS in O(|V| + |E|)time.
 - Parallel algorithm in $O(\log |V|)$ rounds.



- Example: Graph connectivity
 - Given graph G = (V, E), determine whether G is connected.
 - Solvable by DFS in O(|V| + |E|)time.
 - Parallel algorithm in $O(\log |V|)$ rounds.
- Computational model for tasks solvable with algorithms of this form?

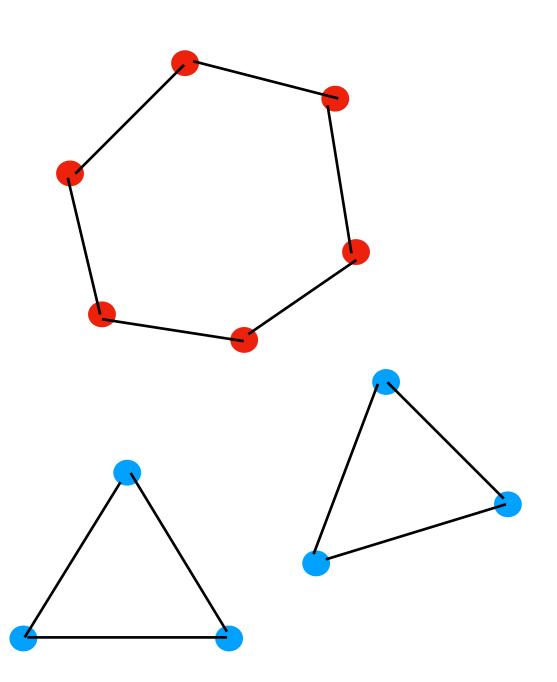


Massively Parallel Computation (MPC) (not Multi-Party Computation)

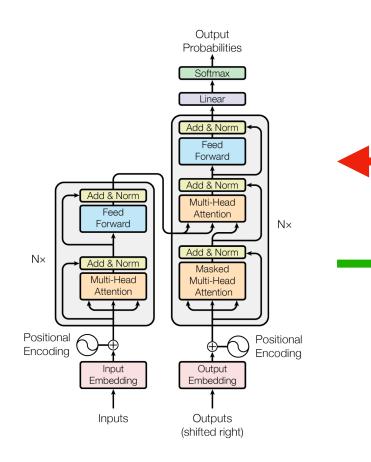
- MPC = theoretical model of MapReduce
- A distributed protocol is MPC on size-N input of $O(\log N)$ -bit words if:
 - q machines, each with local memory $s = N^{0.01}$.
 - Global memory $qs \leq N^{1.01}$.
 - Each of r rounds, machines perform parallel computation and send/receive messages simultaneously.
 - Unbounded computation, total size of messages sent and received per machine $\leq s$.

Massively Parallel Computation (MPC) Examples [Andoni, Song, Stein, Wang, Zhong '18]

- Graph connectivity for |E| = N is solvable in $R = O(\log N)$ rounds, q = O(N) machines, $s = O(N^{0.01})$ local memory.
- Other graph problems: minimum spanning forest, diameter estimation.
- One-cycle vs two-cycle conjecture: Distinguishing cycle graphs of size N from two cycles of size N/2 with q = poly(N) machines and s = o(N) local memory requires $R = \Omega(\log N)$ rounds.

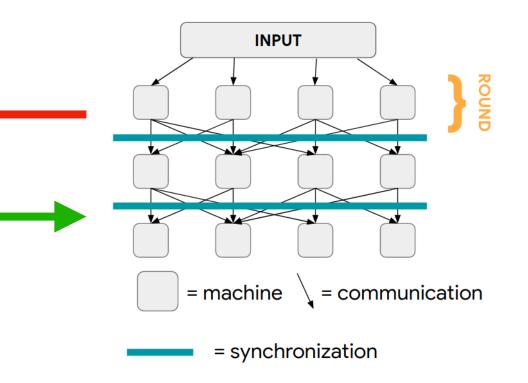


Our results



Theorem 1: Transformers simulate MPC protocols.

Log-depth Transformers can solve connected components



Theorem 2: MPC protocols simulate transformers.

Transformers require log-depth to solve connected components under conjecture.

* GNNs, RNNs, sub-quadratic attention models require poly-depth!

Simulating MPC with transformers

Theorem 1: Any *R*-round MPC protocol with $s = N^{\delta}$ local memory and $q \leq N$ machines can be simulated by a transformer with depth L = O(R) and width $m = \tilde{O}(N^{4\delta})$.

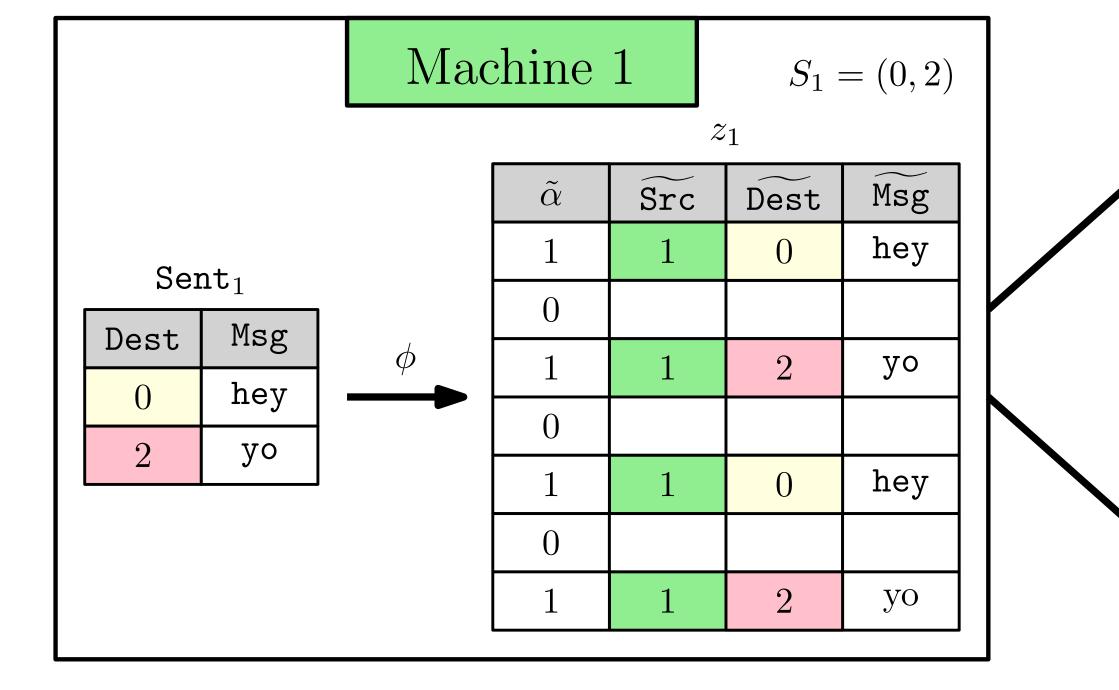
- Proof idea:
 - Simulate local computation on in each MLP.
 - Route information between each machine using message passingencoded self-attention layer.
 - Main technical challenge: Error correction via copies of messages in sparse locations on value vector XV.

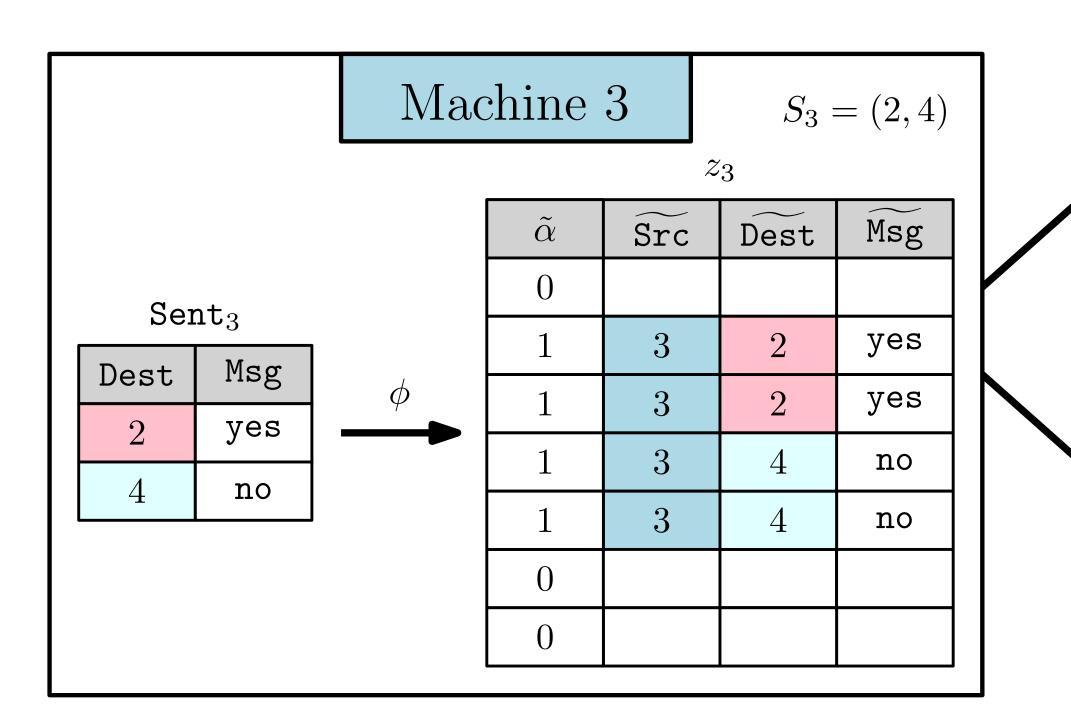
Simulating MPC with transformers

Theorem 1: Any *R*-round MPC protocol with $s = N^{\delta}$ local memory and $q \leq N$ machines can be simulated by a transformer with depth L = O(R) and width $m = \tilde{O}(N^{4\delta})$.

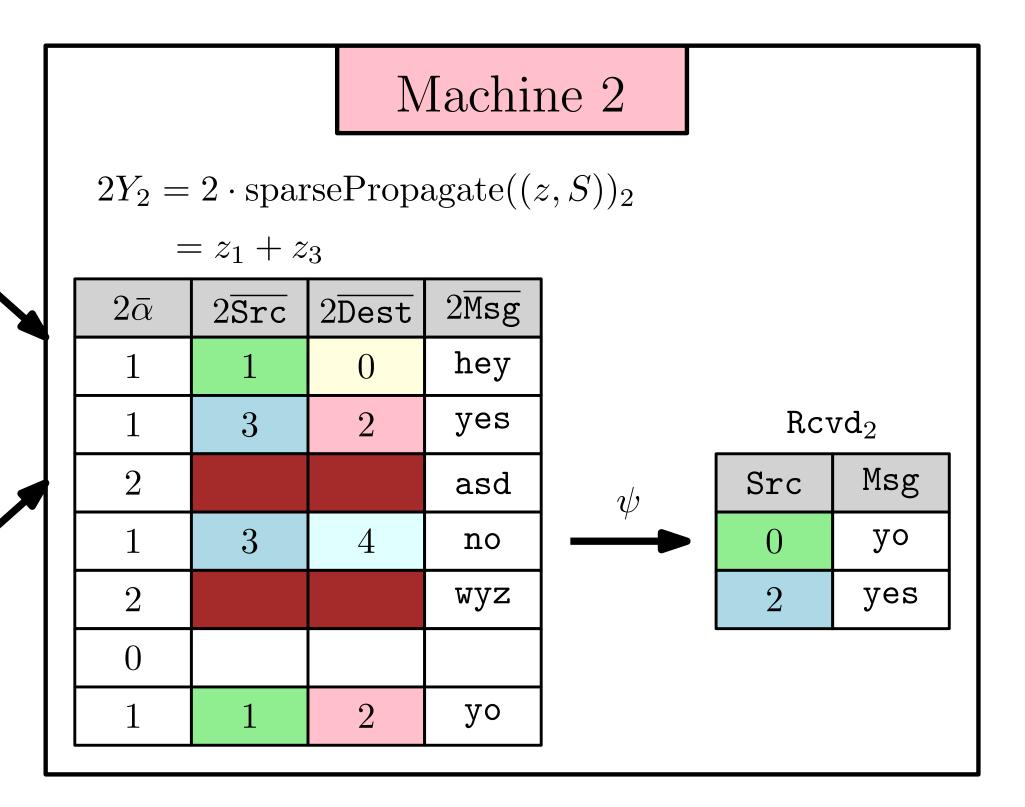
- Encode outgoing messages from eaview value vector XV.
- Encode destination of messages in query vector XQ.
 - Sparse averaging results of [S, Hsu, Telgarsky '23] compute averages of all packets received by each input.
- Decode received average of value vectors, which is possible due to redundancy of packet structure.

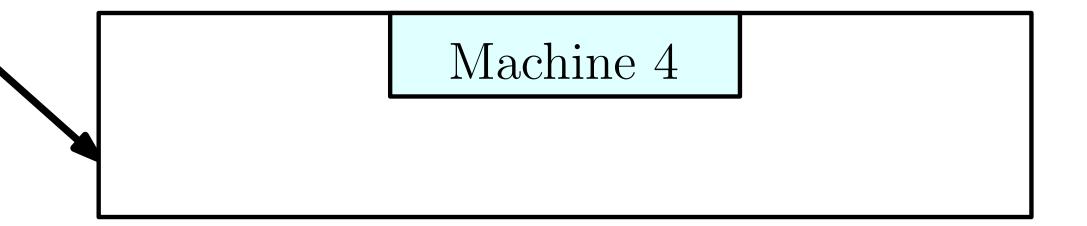
• Encode outgoing messages from each machine as repeated "packets" in





Machine 0





Simulating MPC with transformers

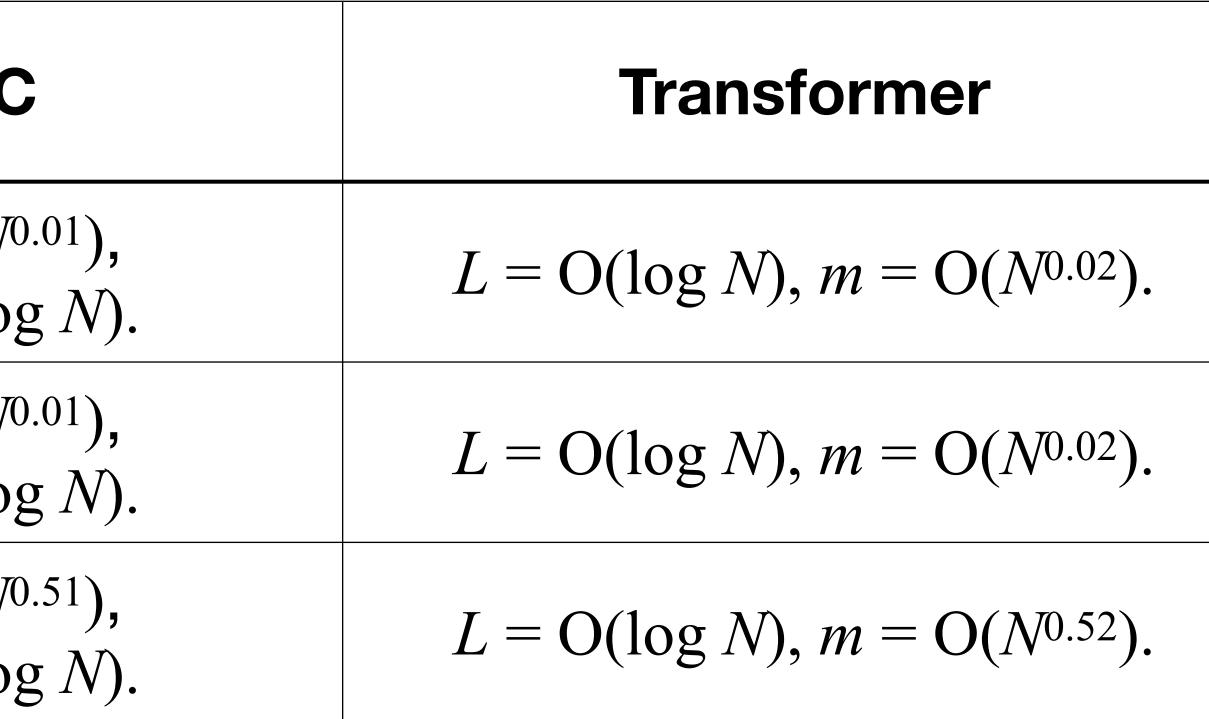
Theorem 1: Any *R*-round MPC protocol with $s = N^{\delta}$ local memory and $q \leq N$ machines can be simulated by a transformer with depth L = O(R)and width $m = \tilde{O}(N^{\delta + 0.0001})$.

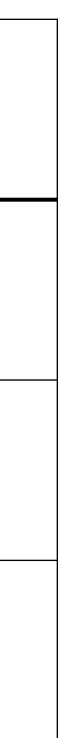
Improvement while at Google Research!

Transformers solve parallelizable algorithms

Theorem 1: Any *R*-round MPC protocol with $s = N^{\delta}$ local memory and $q \leq N$ machines can be simulated by a transformer with depth L = O(R)and width $m = \tilde{O}(N^{\delta + 0.0001})$.

Problem	MPC
Graph connectivity	$s = O(N^0)$ $R = O(\log n^0)$
Min spanning forest	$s = O(N^0)$ $R = O(\log^0)$
L or NL Problems	$s = O(N^{0})$ $R = O(\log N^{0})$





Simulating transformers with MPC

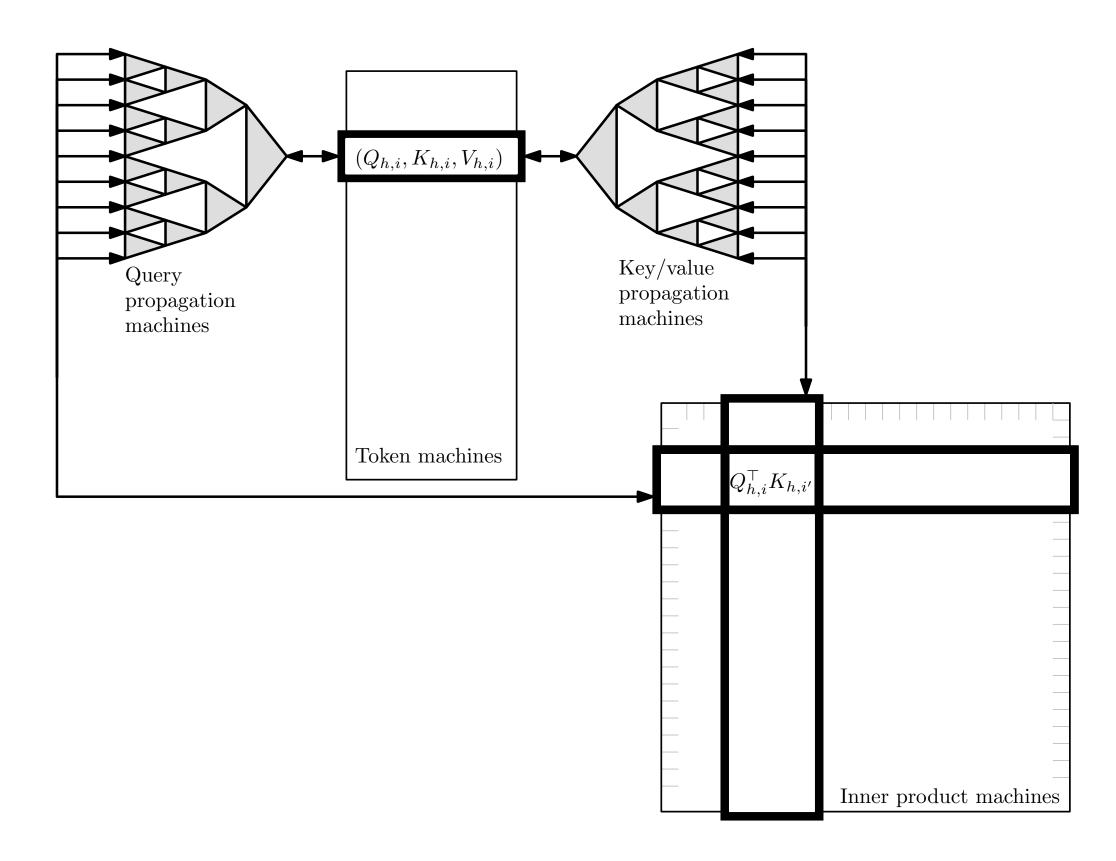
Theorem 2: Any transformer with depth L and width $m = N^{\delta}$ can be $s = N^{2\delta}$ local memory.

- Key limitation: quadratic scaling in global memory.
- Proof idea: Simulate each layer with "embedding machines" and "inner product machines"

simulated by an $O(L/\delta)$ -round MPC protocol with $q = O(N^2)$ machines and

Simulating transformers with MPC

Theorem 2: Any transformer with depth L and width $m = N^{\delta}$ can be $s = N^{2\delta}$ local memory.



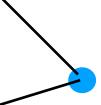
simulated by an $O(L/\delta)$ -round MPC protocol with $q = O(N^2)$ machines and

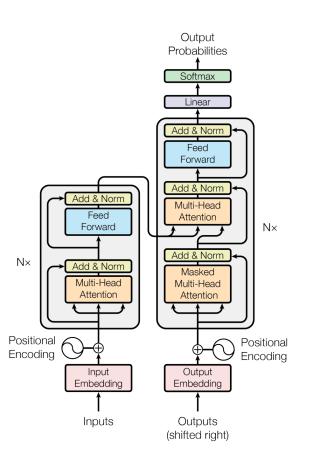
Optimality of parallel implementation

Theorem 2: Any transformer with depth L and width $m = N^{\circ}$ can be simulated by an $O(L/\delta)$ -round MPC protocol with $q = O(N^2)$ machines and $s = N^{2\delta}$ local memory.

• Assuming 1-cycle vs 2-cycle conjecture:

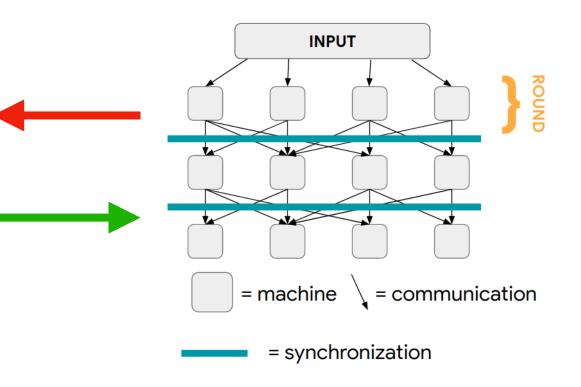
Transformers computing diameter graph connectivity require $m \ge N^{0.49}$ or $L = \Omega(\log N)$.





Theorem 1: Transformers simulate MPC protocols.

Log-depth Transformers can solve connected components



Theorem 2: MPC protocols simulate transformers.

Transformers require log-depth to solve connected components under 1-cycle vs 2-cycle conjecture.

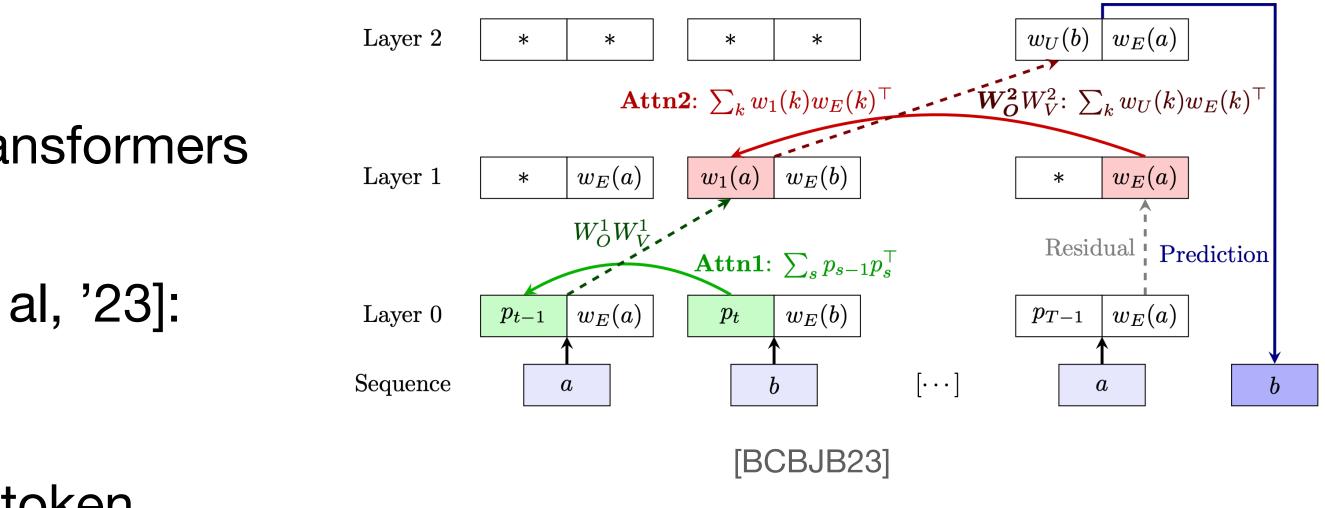
* GNNs, RNNs, sub-quadratic attention models require poly-depth!

Empirics + Mechanistic Interpretability

Takeaway: Parallelizable theoretical constructions are learnable and interpretable

Induction heads and powers of depth

- **Task:** Complete most recent matching bigram:
 - IH(daccabcddca)_N = b
- Occurs frequently as primitive in trained transformers [Anthropic]
- Natural construction with 2 layers [Bietti et al, '23]:
 - Layer 1: identify previous token
 - Layer 2: find most recent occurrence of token
- Impossible with 1 layer
 - Simple communication complexity proof



Multi-hop induction heads and powers of depth

Task: *k*-hop induction heads:

 $hop_k(...a_k a_{k+1}...a_{k-1} a_k...a_1 a_2...a_1) = a_{k+1}$

Transformer theory results

- 1. $O(\log k)$ -depth constructions.
- 2. $\Omega(\log k)$ depth lower bounds (conditional).
- 3. Separation from other architectures (GNN, multi-layer RNNs, some sub-quadraticattention transformers).

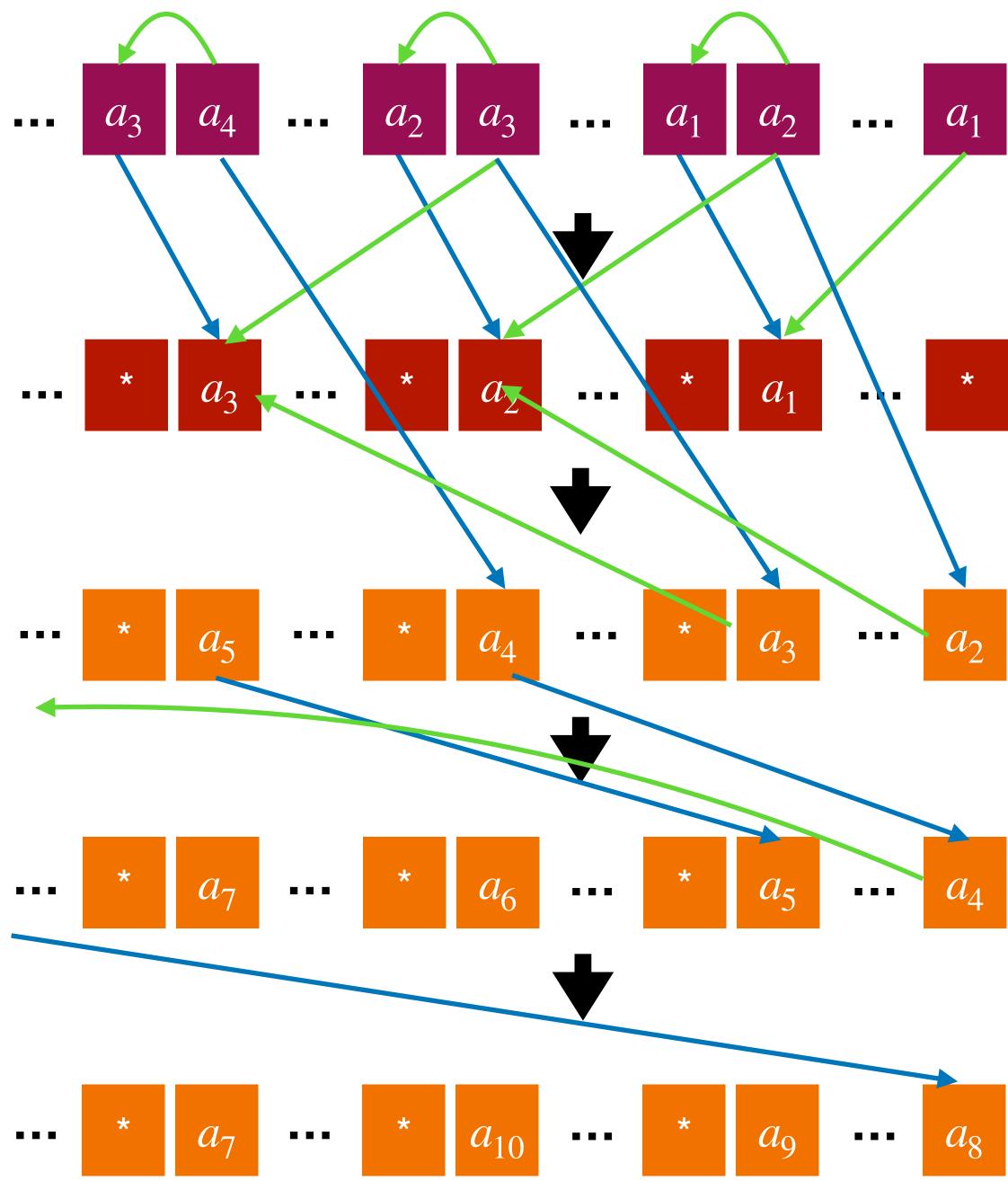
log(k)-depth construction

Task: *k*-hop induction heads:

 $hop_k(\dots a_k a_{k+1} \dots a_{k-1} a_k \dots a_1 a_2 \dots a_1) = a_{k+1}$

baebcabebdea.

Theorem: There exists a transformer with depth $L = 2 + \log k$ and width m = O(1) computing hop_k.



Learnability with gradient descent

Task: *k*-hop induction heads:

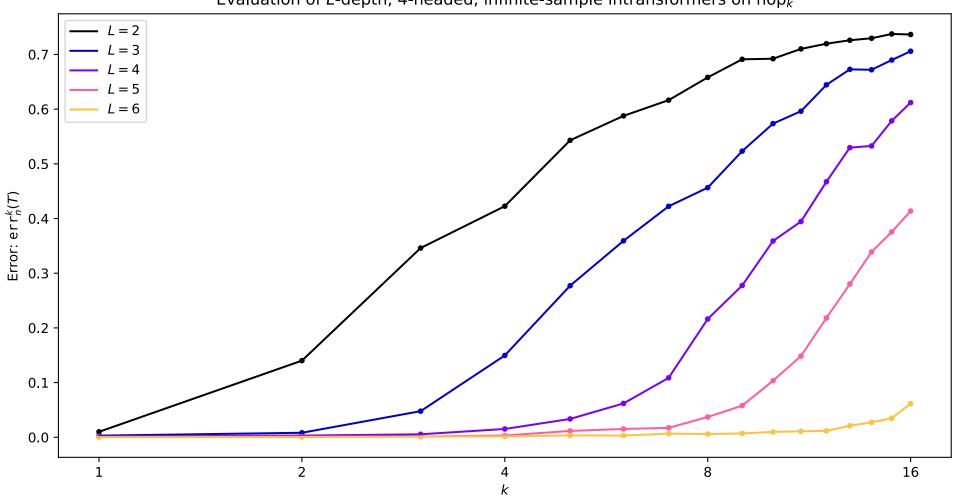
 $hop_k(\dots a_k a_{k+1} \dots a_{k-1} a_k \dots a_1 a_2 \dots a_1) = a_{k+1}$

Empirical setting:

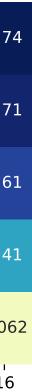
- Curriculum learning mixture of hop_k, k ∈ {0,1,...,16}, 4 distinct tokens.
- Small GPT2 models: m = 128, $H = 4, L \in \{2,3,4,5,6\}$, N = 100.
- Training: 100K steps of Adam.

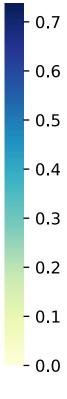
Sharp learnability threshold at $L = \log_2(k) + 2$

Evaluation of *L*-depth, 4-headed, infinite-sample intransformers on hop_k



	с -	0.01	0.14	0.35	0.42	0.54	0.59	0.62	0.66	0.69	0.69	0.71	0.72	0.73	0.73	0.74	0.7
	ω -	0.003	0.008	0.048	0.15	0.28	0.36	0.42	0.46	0.52	0.57	0.6	0.64	0.67	0.67	0.69	0.7
Depth L	4 -	0.001	0.003	0.005	0.015	0.034	0.062	0.11	0.22	0.28	0.36	0.4	0.47	0.53	0.53	0.58	0.6
	ம -	0.001	0.001	0.001	0.003	0.012	0.015	0.017	0.037	0.058	0.1	0.15	0.22	0.28	0.34	0.38	0.4
	- ט	0	0	0.001	0.002	0.003	0.003	0.007	0.006	0.007	0.01	0.011	0.012	0.021	0.027	0.035	0.06
		1	2	3	4	5	6	י 7		9 8	10	11	12	' 13	14	' 15	16





Learnability with gradient descent

Task: *k*-hop induction heads:

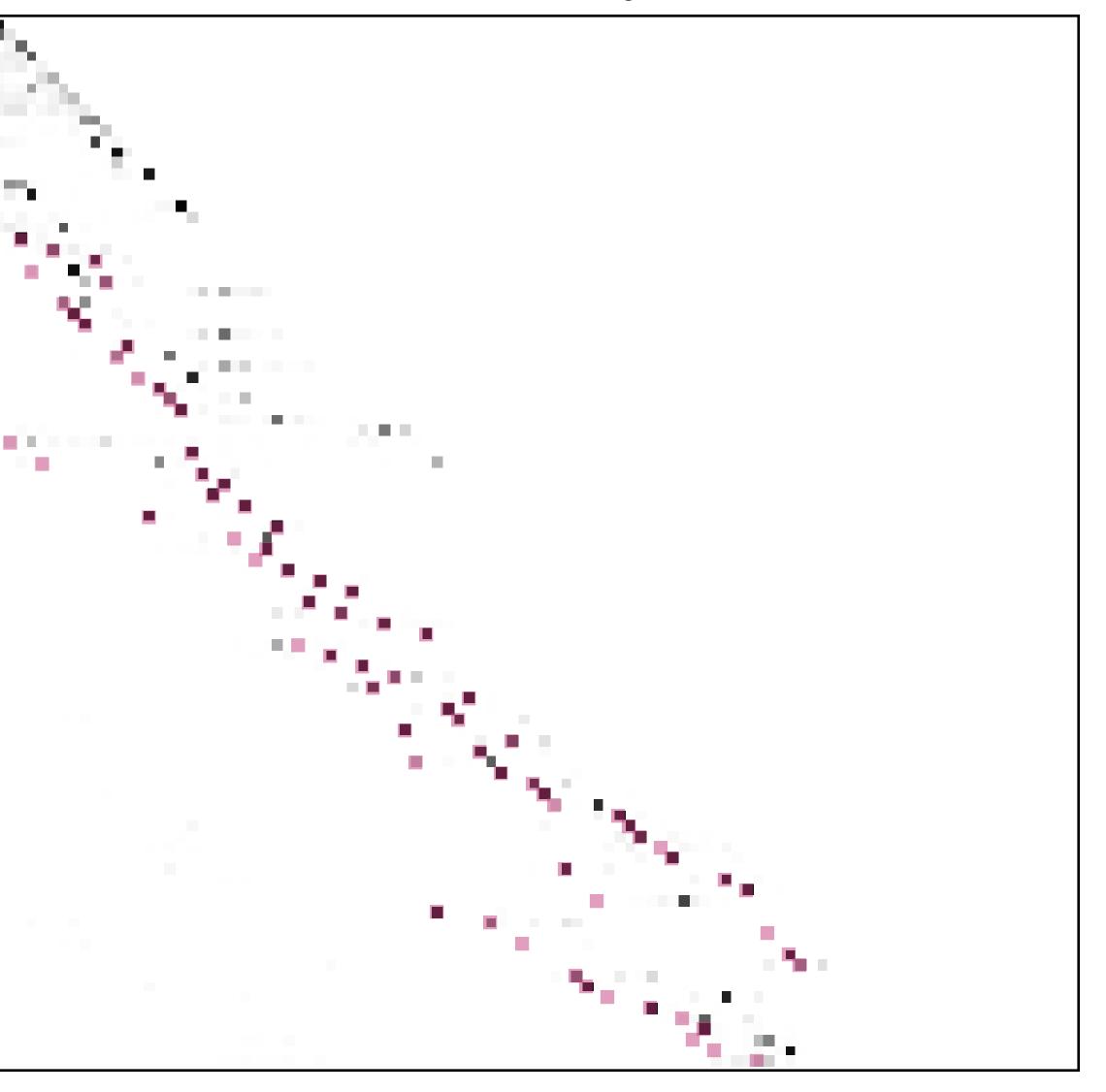
 $hop_k(\dots a_k a_{k+1} \dots a_{k-1} a_k \dots a_1 a_2 \dots a_1) = a_{k+1}$

Empirical setting:

- Curriculum learning mixture of hop_k,
 k ∈ {0,1,...,16},
 4 distinct tokens.
- Small GPT2 models: m = 128, H = 4, $L \in \{2,3,4,5,6\},$ N = 100.
- Training: 100K steps of Adam.

Self-attention head interpretability:

Attention matrix: hop_{16} , L = 6, layer 6, head 1 Highlighting: hop_8 indices



Learnability with gradient descent

Task: *k*-hop induction heads:

 $hop_k(\dots a_k a_{k+1} \dots a_{k-1} a_k \dots a_1 a_2 \dots a_1) = a_{k+1}$

Empirical setting:

- Curriculum learning mixture of hop_k,
 k ∈ {0,1,...,16},
 4 distinct tokens.
- Small GPT2 models: m = 128, H = 4, $L \in \{2,3,4,5,6\},$ N = 100.
- Training: 100K steps of Adam.

Layer 1	
Layer 2	
Layer 3	
Layer 4	
Layer 5	
Layer 6	

Self-attention head interpretability

Attention matrix: hop₁₆, L = 6Inner products with hop_i indices

0.33 0.16 0.09 0.05 0.02 0.01 0.01 0.34 0.01 0.01 0.01 0.01 0.01 0.01 0.32 0.03 0.05 0.02 0.01 <	
0.32 0.08 0.05 0.02 0.01	
0.240.080.050.020.010.010.010.010.010.010.010.010.880.060.060.010.010.010.010.010.010.010.010.010.010.080.220.060.060.060.020.010.010.010.010.010.010.010.010.010.090.010.010.010.010.010.010.010.010.010.010.010.010.090.010.010.010.010.010.010.010.010.010.010.010.010.010.090.010.020.020.030.020.020.020.020.020.030.030.030.030.030.030.030.030.020.030.040.030.010.010.010.010.010.010.010.140.140.030.030.030.030.030.030.03 <th< th=""><th></th></th<>	
0.88 0.09 0.01 0.01 0.08 0.22 0.00 0.00 0.01 0.01 0.92 0.01 0.01 0.01 0.01 0.01 0.93 0.01 0.01 0.01 0.01 0.01 0.93 0.01 0.01 0.01 0.01 0.01 0.01 0.93 0.05 0.07 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.94 0.14 0.13 0.03 0.03 0.02 0.02 0.02 0.03 0	
0.08 0.22 0.06 0.06 0.02 0.01 0.01 0.92 0.01 0.01 0.01 0.01 0.01 0.93 0.01 0.01 0.01 0.01 0.01 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.03 <t< th=""><th></th></t<>	
0.92 0.01 0.93 0.04 0.93 0.94 0.94 0.95 0.95 0.95 0.96 0.07 0.03 0.03 0.02 0.02 0.03	
0.93 0.93 0.93 0.93 0.26 0.06 0.07 0.03 0.03 0.02 0.02 0.03 0.01 <	
0.93 0.26 0.06 0.07 0.03 0.03 0.02 0.02 0.02 0.03 0.01	
0.26 0.06 0.07 0.03 0.03 0.02 0.02 0.02 0.03	
0.21 0.14 0.13 0.06 0.04 0.02 0.01 0.01 0.01 0.01 0.93	
0.93 0.9 0.9 0.14 0.01 0.05 0.03 0.02 0.01	
0.9 0.14 0.01 0.08 0.05 0.02 0.01 <).01
0.14 0.11 0.08 0.05 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01	
	0.04
0.07 0.79 0.06	0.01
0.93	
0.93 0.04 0.81 0.04	
0.03 0.89 0.01	
0.02 0.9 0.01	
0.02 0.07 0.77 0.03	
0.02 0.01 0.12 0.01 0.65 0.04	
0.03 0.01 0.14 0.74 0.13	
0.01 0.01 0.01 0.04 0.82 0.02	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16
	10

- 0.8 - 0.6 - 0.4 - 0.2 - 0.0

Limitations of Alternative Architectures

Takeaway: Other architectures relate to other distributed computing models, which limits their capacity

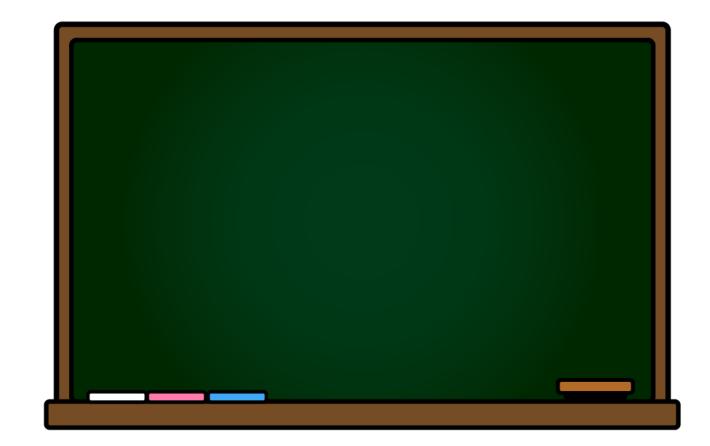
Graph Neural Networks (GNNs) + CONGEST

- [Loukas '19] relates GNNs to CONGEST distributed computing model.
 - CONGEST: Fixed communication graph, each node sends simultaneous $O(\log N)$ -bit messages to neighbors.
 - Bounded message size GNNs can be simulated by CONGEST. \Rightarrow GNNs require $L\sqrt{m} = \tilde{\Omega}(\sqrt{N})$ for subgraph connectivity.
 - vs depth $L = \log(N)$ and width $m = N^{0.01}$ for transformers.

Blackboard communication protocols

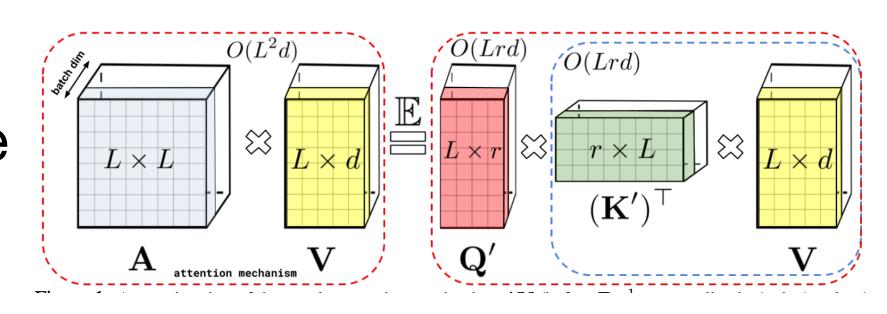
- "Bounded-communication parallel model"
 - k players P_1, \ldots, P_k each receive N/k input tokens.
 - In each round, each player writes s bits of information to the blackboard in the order P_1, \ldots, P_k .
 - After *r* rounds, P_1 returns an answer.
- **Theorem [GM09]:** A blackboard protocol that solves hop_k requires $r \ge k$ or $s = \Omega(N/k^6)$.
 - Standard pointer chasing lower bound.

• Think:
$$k = N^{0.01}$$



State-space models and linear-time attention

- L-layer *m*-width multi-pass RNNs can be simulated by an *L*-round *m*-size protocol.
 - \blacksquare Multi-layer RNNs require depth $L \ge k$ or memory $m = \Omega(N/k^6)$ to solve hop_k. (Similar results for LSTMs, Mamba.)
- L-layer, *m*-embed. dim., *H*-head, *r*-feature dim. Performers can be simulated by an L-round mm'H-size protocol.
 - **Performers** require $L \ge k$ or $mrH = \Omega(N/k^6)$ to solve hop_k. (Similar results for all kernel-based models and Longformer)



Big idea

- Separation between transformers and alternative models:
 - Transformers are highly parallelizable and can solve tasks like connectivity and multi-hop induction heads with log depth.
 - Other models are not highly parallelizable and must compress their memory of the problem in each computational step, which makes these tasks hard.

Extensions at Google Research

Follow-up projects "Attend like a graph" (Bahar Fatemi, Bryan Perozzi, Jonathan Halcrow, Vahab Mirrokni)

- **Context:** Recent "Talk Like a Graph" and "Let Your Graph Do the Talking" papers from OMEGA team benchmarked graph reasoning tasks with trained LLMs.
- **Outcomes:**
 - tasks with "global structure" (e.g. connectivity).
 - reasoning representational results (e.g. triangle counting and shortest path).

Prompt

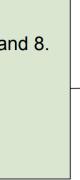
G describes a graph among nodes 0, 1, 2, 3, 4, 5, 6, 7, and 8. In this graph: Node 0 is connected to nodes 2 and 3. Node 1 is connected to nodes 2 and 8.

Question: What is the degree of node 4?

Question: Does this framework for transformers provide insight on graph reasoning?

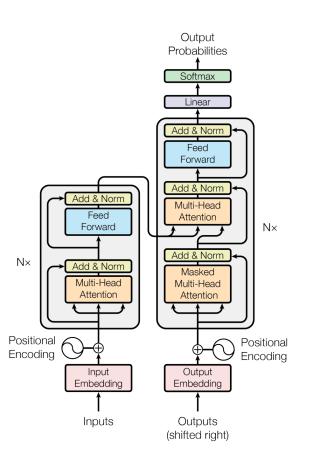
• Experimental results: advantages for vanilla transformers over GNN-based models on

Theory results: improvement of MPC reduction and more complete hierarchy of graph



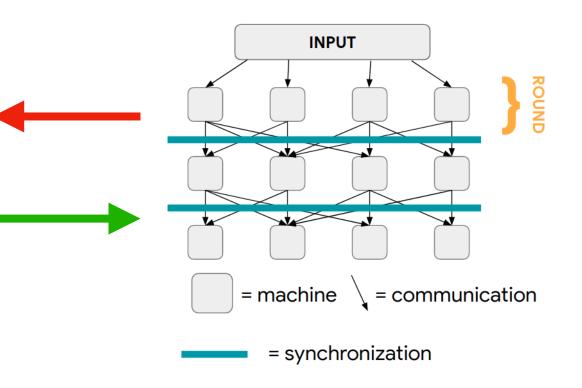
Follow-up projects Unconditional depth lower bounds (Jieming Mao, Jon Schneider, Vahab Mirrokni)

- Context: No existing unconditional negative results for $\omega(1)$ -depth transformers.
- Question: Is there some task for which $\Theta(\log N)$ -depth is necessary and sufficient?
- Outcomes:
 - Designed "acausal k-hop induction heads" task likely requires depth $\Omega(k)$; information theoretic proof draft that furthers connection to pointer chasing.
 - Empirical validation of hardness of this task vs standard hop_k.



Theorem 1: Transformers simulate MPC protocols.

Log-depth Transformers can solve connected components



Theorem 2: MPC protocols simulate transformers.

Transformers require log-depth to solve connected components under 1-cycle vs 2-cycle conjecture.

* GNNs, RNNs, sub-quadratic attention models require poly-depth!

Thank you

