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Talk outline

1. [2 minutes] Introduction


2. [10 minutes] Overview of transformer architecture and theoretical results


3. [15 minutes] Equivalence between transformers and distributed computing


4. [10 minutes] Empirical study of powers of log-depth transformers


5. [10 minutes] Implications for sub-quadratic attention and state-space 
models


6. [5 minutes] Follow-up projects as an OMEGA SR
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My research

Core goal: Understand neural net architectural trade-offs and inductive biases. 

1. Feedforward NN expressivity:  
Effects of depth, weight-regularization, random features on representational powers.


2. Learning low intrinsic-dimensional data:  
Optimization results for two-layer NNs, analysis of inductive biases.


3. Capabilities of sequential modeling architectures: 
Effects of model size and architecture choice among transformers and state-space 
models. 

4. Interdisciplinary work:  
Climate modeling + ML.
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Transformers overview
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Transformer architecture
• Sequence-to-sequence architecture 

• Backbone of modern large language models

• Replaced RNNs and LSTMs as state-of-the-art 

for NLP

• Characteristics:

• Highly parallelizable

• Core primitive: associative self-attention units

• Scalable to long context length (32K GPT-4, 

100K Claude, 1M Gemini)

• Quadratic computational bottleneck

Vaswani et al ‘17

Rogers et al ’20
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Motivating questions

1. Representational impacts of 
embedding dimensions and 
depth?


2. Separations with other models 
(RNNs, GNNs, sub-quadratic 
attention)?


3. Fundamental limitations of 
transformers?

Theoretical questions

1. Are sub-quadratic attention 
models and state-space models 
(SSMs) as powerful as standard 
transformers?


2. Can transformers solve 
compositional tasks in a size-
efficient manner? 

Practical questions



Transformer architecture
• Self-attention unit: 

  
for input ,  
model parameters .


• Multi-headed attention: 

 

• Element-wise multi-layer perceptron 
(MLP):  

• Full transformer: 
 

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)
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Our Contributions
• 2-way relationship between transformers 

and Massively Parallel Computation 
(MPC) distributed computing model.

➡Transformers can implement 

parallelizable algorithms (theoretically 
and empirically).


➡Certain tasks require sufficient depth.


• Other models (SSMs, GNNs, some sub-
quadratic models) correspond to serial 
“blackboard communication protocols.”

➡Separation between transformers and 

others on parallelizable tasks.



Transformers +  
Massively Parallel Computation
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Takeaway: Computational equivalence between 
transformers and MPC



• Example: Graph connectivity


• Given graph , determine 
whether  is connected.


• Solvable by DFS in  
time.

G = (V, E)
G

O( |V | + |E | )

Parallelizable Tasks? 
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• Example: Graph connectivity


• Given graph , determine 
whether  is connected.


• Solvable by DFS in  
time.


• Parallel algorithm in  
rounds.


• Computational model for tasks 
solvable with algorithms of this form? 

G = (V, E)
G

O( |V | + |E | )

O(log |V | )

Parallelizable Tasks? 



(not Multi-Party Computation)

• MPC = theoretical model of MapReduce


• A distributed protocol is MPC on size-  input of -bit words if:


•  machines, each with local memory .


• Global memory .


• Each of  rounds, machines perform parallel computation and  
send/receive messages simultaneously.


• Unbounded computation, total size of messages sent and received per 
machine .

N O(log N)

q s = N0.01

qs ≤ N1.01

r

≤ s

Massively Parallel Computation (MPC)
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Examples [Andoni, Song, Stein, Wang, Zhong ’18]

• Graph connectivity for  is solvable in 
 rounds,  machines, 

 local memory.


• Other graph problems: minimum spanning forest, 
diameter estimation.


• One-cycle vs two-cycle conjecture: 
Distinguishing cycle graphs of size  from two 
cycles of size  with  machines and 

 local memory requires  
rounds.

|E | = N
R = O(log N) q = O(N)
s = O(N0.01)

N
N/2 q = poly(N)

s = o(N) R = Ω(log N)

Massively Parallel Computation (MPC)
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Our results

Theorem 1: Transformers 
simulate MPC protocols.

Theorem 2: MPC protocols 
simulate transformers.

Log-depth Transformers can 
solve connected components 

Transformers require log-depth to 
solve connected components under 
conjecture.

* GNNs, RNNs, sub-quadratic 
attention models require poly-depth!



Simulating MPC with transformers
Theorem 1: Any -round MPC protocol with  local memory and 

 machines can be simulated by a transformer with depth  
and width .


• Proof idea:


• Simulate local computation on in each MLP.


• Route information between each machine using message passing-
encoded self-attention layer.


• Main technical challenge: Error correction via copies of messages in 
sparse locations on value vector .

R s = Nδ

q ≤ N L = O(R)
m = Õ(N4δ)

XV



Simulating MPC with transformers
Theorem 1: Any -round MPC protocol with  local memory and 

 machines can be simulated by a transformer with depth  
and width .


• Encode outgoing messages from each machine as repeated “packets” in 
value vector .


• Encode destination of messages in query vector .


• Sparse averaging results of [S, Hsu, Telgarsky ’23] compute averages of 
all packets received by each input.


• Decode received average of value vectors, which is possible due to 
redundancy of packet structure. 

R s = Nδ

q ≤ N L = O(R)
m = Õ(N4δ)

XV

XQ
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Simulating MPC with transformers
Theorem 1: Any -round MPC protocol with  local memory and 

 machines can be simulated by a transformer with depth  
and width .


• Improvement while at Google Research!

R s = Nδ

q ≤ N L = O(R)
m = Õ(Nδ+0.0001)



Transformers solve parallelizable algorithms
Theorem 1: Any -round MPC protocol with  local memory and 

 machines can be simulated by a transformer with depth  
and width .

R s = Nδ

q ≤ N L = O(R)
m = Õ(Nδ+0.0001)

Problem MPC Transformer

Graph connectivity s = O(N0.01),  
R = O(log N). L = O(log N), m = O(N0.02).

Min spanning forest s = O(N0.01),  
R = O(log N). L = O(log N), m = O(N0.02).

L or NL Problems s = O(N0.51),  
R = O(log N). L = O(log N), m = O(N0.52).



Simulating transformers with MPC
Theorem 2: Any transformer with depth  and width  can be 
simulated by an -round MPC protocol with  machines and 
s =  local memory.


• Key limitation: quadratic scaling in global memory.


• Proof idea: Simulate each layer with “embedding machines” and “inner 
product machines”

L m = Nδ

O(L/δ) q = O(N2)
N2δ



Simulating transformers with MPC
Theorem 2: Any transformer with depth  and width  can be 
simulated by an -round MPC protocol with  machines and 
s =  local memory.

L m = Nδ

O(L/δ) q = O(N2)
N2δ

(Qh,i,Kh,i, Vh,i)

Token machines

Key/value
propagation
machines

Query
propagation
machines

Q>
h,iKh,i0

Inner product machines



Optimality of parallel implementation
Theorem 2: Any transformer with depth  and width  can be 
simulated by an -round MPC protocol with  machines 
and s =  local memory. 

• Assuming 1-cycle vs 2-cycle conjecture:


➡Transformers computing diameter graph connectivity require  
 or .

L m = Nδ

O(L/δ) q = O(N2)
N2δ

m ≥ N0.49 L = Ω(log N)



Our results

Theorem 1: Transformers 
simulate MPC protocols.

Theorem 2: MPC protocols 
simulate transformers.

Log-depth Transformers can 
solve connected components 

Transformers require log-depth to 
solve connected components under 
1-cycle vs 2-cycle conjecture.

* GNNs, RNNs, sub-quadratic 
attention models require poly-depth!



Empirics +  
Mechanistic Interpretability

28

Takeaway: Parallelizable theoretical constructions are 
learnable and interpretable



Induction heads and powers of depth

• Task: Complete most recent matching bigram:


• 


• Occurs frequently as primitive in trained transformers 
[Anthropic]


• Natural construction with 2 layers [Bietti et al, ’23]:


• Layer 1: identify previous token


• Layer 2: find most recent occurrence of token


• Impossible with 1 layer


• Simple communication complexity proof

IH(𝚍𝚊𝚌𝚌𝚊𝚋𝚌𝚍𝚍𝚌𝚊)N = 𝚋

[BCBJB23]



Multi-hop induction heads and powers of depth

Task: -hop induction heads:
k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1 1. -depth constructions.


2.  depth lower bounds 
(conditional).


3. Separation from other 
architectures (GNN, multi-layer 
RNNs, some sub-quadratic-
attention transformers).

O(log k)
Ω(log k)

Transformer theory results



-depth 
construction
log(k)

Task: -hop induction heads:




Theorem: There exists a 
transformer with depth 

 and width 
 computing .

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

L = 2 + log k
m = O(1) hopk

a1a1 a2a2 a3a3 a4 … … ……

*a1a2a3 *** … … ……

a2a3*** a4a5
… … ……

a4a5*** a6a7 … … ……

a8a9*** a10a7 … … ……
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Learnability with 
gradient descent
Task: -hop induction heads:





Empirical setting:


• Curriculum learning mixture of 
, ,  

4 distinct tokens.


• Small GPT2 models: , 
, , 

.


• Training: 100K steps of Adam.


k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk k ∈ {0,1,…,16}

m = 128
H = 4 L ∈ {2,3,4,5,6}
N = 100

Sharp learnability threshold 
at  L = log2(k) + 2
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Self-attention head interpretability:  
 Attention matrix: , , layer , head 


Highlighting:  indices
hop16 L = 6 6 1

hop8Learnability 
with gradient 
descent
Task: -hop induction heads:





Empirical setting:


• Curriculum learning 
mixture of , 

,  
4 distinct tokens.


• Small GPT2 models: 
, , 

, 
.


• Training: 100K steps of 
Adam.

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk
k ∈ {0,1,…,16}

m = 128 H = 4
L ∈ {2,3,4,5,6}
N = 100
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Self-attention head interpretability  
Attention matrix: , 


Inner products with  indices
hop16 L = 6

hopjLearnability 
with gradient 
descent
Task: -hop induction heads:





Empirical setting:


• Curriculum learning 
mixture of , 

,  
4 distinct tokens.


• Small GPT2 models: 
, , 

, 
.


• Training: 100K steps of 
Adam.

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk
k ∈ {0,1,…,16}

m = 128 H = 4
L ∈ {2,3,4,5,6}
N = 100
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Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6



Limitations of Alternative 
Architectures
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Takeaway: Other architectures relate to other distributed 
computing models, which limits their capacity



• [Loukas ’19] relates GNNs to CONGEST distributed computing model.


• CONGEST: Fixed communication graph, each node sends 
simultaneous -bit messages to neighbors.


• Bounded message size GNNs can be simulated by CONGEST.


➡GNNs require  for subgraph connectivity.


• vs depth  and width  for transformers.

O(log N)

L m = Ω̃( N)

L = log(N) m = N0.01

Graph Neural Networks (GNNs) + CONGEST



Blackboard communication protocols

• “Bounded-communication parallel model”


•  players  each receive  input tokens.


• In each round, each player writes  bits of 
information to the blackboard in the order .


• After  rounds,  returns an answer.


• Theorem [GM09]: A blackboard protocol that solves 
 requires  or .


• Standard pointer chasing lower bound.


• Think: .

k P1, …, Pk N/k

s
P1, …, Pk

r P1

hopk r ≥ k s = Ω(N/k6)

k = N0.01



State-space models and linear-time attention

• -layer -width multi-pass RNNs can be simulated by 
an -round -size protocol.


➡Multi-layer RNNs require depth  or memory 
 to solve . (Similar results for 

LSTMs, Mamba.)


• -layer, -embed. dim., -head, -feature dim. 
Performers can be simulated by an -round -size 
protocol.


➡Performers require  or  to 
solve . (Similar results for all kernel-based 
models and Longformer)

L m
L m

L ≥ k
m = Ω(N/k6) hopk

L m H r
L mm′ H

L ≥ k mrH = Ω(N/k6)
hopk



Big idea

• Separation between transformers and alternative models:


• Transformers are highly parallelizable and can solve tasks like 
connectivity and multi-hop induction heads with log depth.


• Other models are not highly parallelizable and must compress their 
memory of the problem in each computational step, which makes 
these tasks hard.



Extensions at Google Research
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“Attend like a graph”  
(Bahar Fatemi, Bryan Perozzi, Jonathan Halcrow, Vahab Mirrokni)

• Context: Recent “Talk Like a Graph” and “Let Your Graph Do the  
Talking” papers from OMEGA team benchmarked graph reasoning  
tasks with trained LLMs.


• Question: Does this framework for transformers provide insight on graph reasoning? 


• Outcomes:  


• Experimental results: advantages for vanilla transformers over GNN-based models on 
tasks with “global structure” (e.g. connectivity).


• Theory results: improvement of MPC reduction and more complete hierarchy of graph 
reasoning representational results (e.g. triangle counting and shortest path).

Follow-up projects



Unconditional depth lower bounds 
(Jieming Mao, Jon Schneider, Vahab Mirrokni)

Follow-up projects

• Context: No existing unconditional negative results for -depth transformers.


• Question: Is there some task for which -depth is necessary and 
sufficient? 


• Outcomes:  


• Designed “acausal -hop induction heads” task likely requires depth ; 
information theoretic proof draft that furthers connection to pointer chasing.


• Empirical validation of hardness of this task vs standard .

ω(1)

Θ(log N)

k Ω(k)

hopk



Our results

Theorem 2: MPC protocols 
simulate transformers.

Theorem 1: Transformers 
simulate MPC protocols.

Log-depth Transformers can 
solve connected components 

Transformers require log-depth to 
solve connected components under 
1-cycle vs 2-cycle conjecture.

* GNNs, RNNs, sub-quadratic 
attention models require poly-depth!



Thank you


