
A distributed computing lens on
transformers
Clayton Sanford
April 9th, 2024

Talk outline

1. [2 minutes] Introduction

2. [10 minutes] Overview of transformer architecture and theoretical results

3. [15 minutes] Equivalence between transformers and distributed computing

4. [10 minutes] Empirical study of powers of log-depth transformers

5. [10 minutes] Implications for sub-quadratic attention and state-space
models

6. [5 minutes] Follow-up projects as an OMEGA SR

2

My research

Core goal: Understand neural net architectural trade-offs and inductive biases.

1. Feedforward NN expressivity:  
Effects of depth, weight-regularization, random features on representational powers.

2. Learning low intrinsic-dimensional data:  
Optimization results for two-layer NNs, analysis of inductive biases.

3. Capabilities of sequential modeling architectures: 
Effects of model size and architecture choice among transformers and state-space
models.

4. Interdisciplinary work:  
Climate modeling + ML.

3

Transformers overview

4

Transformer architecture
• Sequence-to-sequence architecture

• Backbone of modern large language models

• Replaced RNNs and LSTMs as state-of-the-art

for NLP

• Characteristics:

• Highly parallelizable

• Core primitive: associative self-attention units

• Scalable to long context length (32K GPT-4,

100K Claude, 1M Gemini)

• Quadratic computational bottleneck

Vaswani et al ‘17

Rogers et al ’20

5

Motivating questions

1. Representational impacts of
embedding dimensions and
depth?

2. Separations with other models
(RNNs, GNNs, sub-quadratic
attention)?

3. Fundamental limitations of
transformers?

Theoretical questions

1. Are sub-quadratic attention
models and state-space models
(SSMs) as powerful as standard
transformers?

2. Can transformers solve
compositional tasks in a size-
efficient manner?

Practical questions

Transformer architecture
• Self-attention unit:

  
for input ,  
model parameters .

• Multi-headed attention:

• Element-wise multi-layer perceptron
(MLP):

• Full transformer:

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)

7

=
 XV

ℝN×m

softmax(XQKT XT)

ℝN×N
×

 XQ

ℝN×m

 XV

ℝN×m

 KT XT ℝN×m()f(X) = softmax × ×

Our Contributions
• 2-way relationship between transformers

and Massively Parallel Computation
(MPC) distributed computing model.

➡Transformers can implement

parallelizable algorithms (theoretically
and empirically).

➡Certain tasks require sufficient depth.

• Other models (SSMs, GNNs, some sub-
quadratic models) correspond to serial
“blackboard communication protocols.”

➡Separation between transformers and

others on parallelizable tasks.

Transformers +
Massively Parallel Computation

9

Takeaway: Computational equivalence between 
transformers and MPC

• Example: Graph connectivity

• Given graph , determine
whether is connected.

• Solvable by DFS in
time.

G = (V, E)
G

O(|V | + |E |)

Parallelizable Tasks?

• Example: Graph connectivity

• Given graph , determine
whether is connected.

• Solvable by DFS in
time.

• Parallel algorithm in
rounds.

G = (V, E)
G

O(|V | + |E |)

O(log |V |)

Parallelizable Tasks?

• Example: Graph connectivity

• Given graph , determine
whether is connected.

• Solvable by DFS in
time.

• Parallel algorithm in
rounds.

G = (V, E)
G

O(|V | + |E |)

O(log |V |)

Parallelizable Tasks?

• Example: Graph connectivity

• Given graph , determine
whether is connected.

• Solvable by DFS in
time.

• Parallel algorithm in
rounds.

G = (V, E)
G

O(|V | + |E |)

O(log |V |)

Parallelizable Tasks?

• Example: Graph connectivity

• Given graph , determine
whether is connected.

• Solvable by DFS in
time.

• Parallel algorithm in
rounds.

G = (V, E)
G

O(|V | + |E |)

O(log |V |)

Parallelizable Tasks?

• Example: Graph connectivity

• Given graph , determine
whether is connected.

• Solvable by DFS in
time.

• Parallel algorithm in
rounds.

• Computational model for tasks
solvable with algorithms of this form?

G = (V, E)
G

O(|V | + |E |)

O(log |V |)

Parallelizable Tasks?

(not Multi-Party Computation)

• MPC = theoretical model of MapReduce

• A distributed protocol is MPC on size- input of -bit words if:

• machines, each with local memory .

• Global memory .

• Each of rounds, machines perform parallel computation and  
send/receive messages simultaneously.

• Unbounded computation, total size of messages sent and received per
machine .

N O(log N)

q s = N0.01

qs ≤ N1.01

r

≤ s

Massively Parallel Computation (MPC)

16

Examples [Andoni, Song, Stein, Wang, Zhong ’18]

• Graph connectivity for is solvable in
 rounds, machines,

 local memory.

• Other graph problems: minimum spanning forest,
diameter estimation.

• One-cycle vs two-cycle conjecture:
Distinguishing cycle graphs of size from two
cycles of size with machines and

 local memory requires
rounds.

|E | = N
R = O(log N) q = O(N)
s = O(N0.01)

N
N/2 q = poly(N)

s = o(N) R = Ω(log N)

Massively Parallel Computation (MPC)

17

Our results

Theorem 1: Transformers
simulate MPC protocols.

Theorem 2: MPC protocols
simulate transformers.

Log-depth Transformers can
solve connected components

Transformers require log-depth to
solve connected components under
conjecture.

* GNNs, RNNs, sub-quadratic
attention models require poly-depth!

Simulating MPC with transformers
Theorem 1: Any -round MPC protocol with local memory and

 machines can be simulated by a transformer with depth
and width .

• Proof idea:

• Simulate local computation on in each MLP.

• Route information between each machine using message passing-
encoded self-attention layer.

• Main technical challenge: Error correction via copies of messages in
sparse locations on value vector .

R s = Nδ

q ≤ N L = O(R)
m = Õ(N4δ)

XV

Simulating MPC with transformers
Theorem 1: Any -round MPC protocol with local memory and

 machines can be simulated by a transformer with depth
and width .

• Encode outgoing messages from each machine as repeated “packets” in
value vector .

• Encode destination of messages in query vector .

• Sparse averaging results of [S, Hsu, Telgarsky ’23] compute averages of
all packets received by each input.

• Decode received average of value vectors, which is possible due to
redundancy of packet structure. 

R s = Nδ

q ≤ N L = O(R)
m = Õ(N4δ)

XV

XQ

2Y2 = 2 · sparsePropagate((z, S))2

2↵̄ 2Src 2Dest

Y1 = (0, 2)

�

gDest gMsggSrc↵̃

z1

1

0

1

0

1

0

1

0

0

2

2

1

1

1

1

hey

yo

hey

yo

S1 = (0, 2)

S3 = (2, 4)

�Dest Msg

yes

no

2

4

Sent3

gDest gMsggSrc↵̃

z3

0

1

0

1

1

0

3

3

3

3

2

2

4

4

yes

yes

no

no

Dest Msg

hey

yo

0

2

Sent1

2Msg

= z1 + z3

1

1

2

1

2

0

1

hey

yes

asd

no

wyz

yo

1

3

3

1

0

2

2

4

Src Msg

yo

yes

0

2

Rcvd2

1

Machine 0

Machine 4

Machine 1

Machine 3

Machine 2

Simulating MPC with transformers
Theorem 1: Any -round MPC protocol with local memory and

 machines can be simulated by a transformer with depth
and width .

• Improvement while at Google Research!

R s = Nδ

q ≤ N L = O(R)
m = Õ(Nδ+0.0001)

Transformers solve parallelizable algorithms
Theorem 1: Any -round MPC protocol with local memory and

 machines can be simulated by a transformer with depth
and width .

R s = Nδ

q ≤ N L = O(R)
m = Õ(Nδ+0.0001)

Problem MPC Transformer

Graph connectivity s = O(N0.01),  
R = O(log N). L = O(log N), m = O(N0.02).

Min spanning forest s = O(N0.01),  
R = O(log N). L = O(log N), m = O(N0.02).

L or NL Problems s = O(N0.51),  
R = O(log N). L = O(log N), m = O(N0.52).

Simulating transformers with MPC
Theorem 2: Any transformer with depth and width can be
simulated by an -round MPC protocol with machines and
s = local memory.

• Key limitation: quadratic scaling in global memory.

• Proof idea: Simulate each layer with “embedding machines” and “inner
product machines”

L m = Nδ

O(L/δ) q = O(N2)
N2δ

Simulating transformers with MPC
Theorem 2: Any transformer with depth and width can be
simulated by an -round MPC protocol with machines and
s = local memory.

L m = Nδ

O(L/δ) q = O(N2)
N2δ

(Qh,i,Kh,i, Vh,i)

Token machines

Key/value
propagation
machines

Query
propagation
machines

Q>
h,iKh,i0

Inner product machines

Optimality of parallel implementation
Theorem 2: Any transformer with depth and width can be
simulated by an -round MPC protocol with machines
and s = local memory.

• Assuming 1-cycle vs 2-cycle conjecture:

➡Transformers computing diameter graph connectivity require  
 or .

L m = Nδ

O(L/δ) q = O(N2)
N2δ

m ≥ N0.49 L = Ω(log N)

Our results

Theorem 1: Transformers
simulate MPC protocols.

Theorem 2: MPC protocols
simulate transformers.

Log-depth Transformers can
solve connected components

Transformers require log-depth to
solve connected components under
1-cycle vs 2-cycle conjecture.

* GNNs, RNNs, sub-quadratic
attention models require poly-depth!

Empirics +
Mechanistic Interpretability

28

Takeaway: Parallelizable theoretical constructions are 
learnable and interpretable

Induction heads and powers of depth

• Task: Complete most recent matching bigram:

•

• Occurs frequently as primitive in trained transformers
[Anthropic]

• Natural construction with 2 layers [Bietti et al, ’23]:

• Layer 1: identify previous token

• Layer 2: find most recent occurrence of token

• Impossible with 1 layer

• Simple communication complexity proof

IH(𝚍𝚊𝚌𝚌𝚊𝚋𝚌𝚍𝚍𝚌𝚊)N = 𝚋

[BCBJB23]

Multi-hop induction heads and powers of depth

Task: -hop induction heads:
k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1 1. -depth constructions.

2. depth lower bounds
(conditional).

3. Separation from other
architectures (GNN, multi-layer
RNNs, some sub-quadratic-
attention transformers).

O(log k)
Ω(log k)

Transformer theory results

-depth 
construction
log(k)

Task: -hop induction heads:

Theorem: There exists a
transformer with depth

 and width
 computing .

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

L = 2 + log k
m = O(1) hopk

a1a1 a2a2 a3a3 a4 … … ……

*a1a2a3 *** … … ……

a2a3*** a4a5
… … ……

a4a5*** a6a7 … … ……

a8a9*** a10a7 … … ……
31

Learnability with
gradient descent
Task: -hop induction heads:

Empirical setting:

• Curriculum learning mixture of
, ,  

4 distinct tokens.

• Small GPT2 models: ,
, ,

.

• Training: 100K steps of Adam.

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk k ∈ {0,1,…,16}

m = 128
H = 4 L ∈ {2,3,4,5,6}
N = 100

Sharp learnability threshold
at L = log2(k) + 2

32

Self-attention head interpretability:
 Attention matrix: , , layer , head

Highlighting: indices
hop16 L = 6 6 1

hop8Learnability
with gradient
descent
Task: -hop induction heads:

Empirical setting:

• Curriculum learning
mixture of ,

,  
4 distinct tokens.

• Small GPT2 models:
, ,

,
.

• Training: 100K steps of
Adam.

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk
k ∈ {0,1,…,16}

m = 128 H = 4
L ∈ {2,3,4,5,6}
N = 100

33

Self-attention head interpretability
Attention matrix: ,

Inner products with indices
hop16 L = 6

hopjLearnability
with gradient
descent
Task: -hop induction heads:

Empirical setting:

• Curriculum learning
mixture of ,

,  
4 distinct tokens.

• Small GPT2 models:
, ,

,
.

• Training: 100K steps of
Adam.

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk
k ∈ {0,1,…,16}

m = 128 H = 4
L ∈ {2,3,4,5,6}
N = 100

34

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Limitations of Alternative
Architectures

35

Takeaway: Other architectures relate to other distributed 
computing models, which limits their capacity

• [Loukas ’19] relates GNNs to CONGEST distributed computing model.

• CONGEST: Fixed communication graph, each node sends
simultaneous -bit messages to neighbors.

• Bounded message size GNNs can be simulated by CONGEST.

➡GNNs require for subgraph connectivity.

• vs depth and width for transformers.

O(log N)

L m = Ω̃(N)

L = log(N) m = N0.01

Graph Neural Networks (GNNs) + CONGEST

Blackboard communication protocols

• “Bounded-communication parallel model”

• players each receive input tokens.

• In each round, each player writes bits of
information to the blackboard in the order .

• After rounds, returns an answer.

• Theorem [GM09]: A blackboard protocol that solves
 requires or .

• Standard pointer chasing lower bound.

• Think: .

k P1, …, Pk N/k

s
P1, …, Pk

r P1

hopk r ≥ k s = Ω(N/k6)

k = N0.01

State-space models and linear-time attention

• -layer -width multi-pass RNNs can be simulated by
an -round -size protocol.

➡Multi-layer RNNs require depth or memory
 to solve . (Similar results for

LSTMs, Mamba.)

• -layer, -embed. dim., -head, -feature dim.
Performers can be simulated by an -round -size
protocol.

➡Performers require or to
solve . (Similar results for all kernel-based
models and Longformer)

L m
L m

L ≥ k
m = Ω(N/k6) hopk

L m H r
L mm′ H

L ≥ k mrH = Ω(N/k6)
hopk

Big idea

• Separation between transformers and alternative models:

• Transformers are highly parallelizable and can solve tasks like
connectivity and multi-hop induction heads with log depth.

• Other models are not highly parallelizable and must compress their
memory of the problem in each computational step, which makes
these tasks hard.

Extensions at Google Research

40

“Attend like a graph”  
(Bahar Fatemi, Bryan Perozzi, Jonathan Halcrow, Vahab Mirrokni)

• Context: Recent “Talk Like a Graph” and “Let Your Graph Do the  
Talking” papers from OMEGA team benchmarked graph reasoning  
tasks with trained LLMs.

• Question: Does this framework for transformers provide insight on graph reasoning?

• Outcomes:

• Experimental results: advantages for vanilla transformers over GNN-based models on
tasks with “global structure” (e.g. connectivity).

• Theory results: improvement of MPC reduction and more complete hierarchy of graph
reasoning representational results (e.g. triangle counting and shortest path).

Follow-up projects

Unconditional depth lower bounds
(Jieming Mao, Jon Schneider, Vahab Mirrokni)

Follow-up projects

• Context: No existing unconditional negative results for -depth transformers.

• Question: Is there some task for which -depth is necessary and
sufficient?

• Outcomes:

• Designed “acausal -hop induction heads” task likely requires depth ;
information theoretic proof draft that furthers connection to pointer chasing.

• Empirical validation of hardness of this task vs standard .

ω(1)

Θ(log N)

k Ω(k)

hopk

Our results

Theorem 2: MPC protocols
simulate transformers.

Theorem 1: Transformers
simulate MPC protocols.

Log-depth Transformers can
solve connected components

Transformers require log-depth to
solve connected components under
1-cycle vs 2-cycle conjecture.

* GNNs, RNNs, sub-quadratic
attention models require poly-depth!

Thank you

