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Transformer architecture
• Sequence-to-sequence architecture 

• Backbone of modern large language models

• Replaced RNNs and LSTMs as state-of-the-art 

for NLP

• Characteristics:

• Highly parallelizable

• Core primitive: associative self-attention units

• Scalable to long context length (32K GPT-4, 

100K Claude)

• Quadratic computational bottleneck

Vaswani et al ‘17

Rogers et al ’20
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Transformer architecture
• Self-attention unit: 

  
for input ,  
model parameters .


• Multi-headed attention: 

 

• Element-wise multi-layer perceptron 
(MLP):  

• Full transformer: 
 

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)
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Transformer architecture
What is it? 

• Self-attention unit: 
 for  

input , model parameters 
.


• Multi-headed attention: 

 

• Element-wise multi-layer perceptron (MLP): 
 

• Full transformer: 
 

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)

Can the strengths and limitations of 
transformers be understood via 
function approximation? 

1. Comparisons to other models 

(RNNs, GNNs,  attention)

2. Representational impact of



3. Difficult tasks for transformers

o(N2)

m, H, L

Our questions



Theoretical lenses on transformer abilities

1. Transformers as formal language recognizers


2. Transformers as automata


3. Transformers as circuits


4. Transformers as communication protocols 

• New perspective: view  inputs as agents that communicate in regimented 
manner; analysis via communication complexity and distributed 
computation.


• Quantitative bounds w.r.t. width and depth; incorporates distinct transformer 
structure; comparisons with other models.

N
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(not Multi-Party Computation)

• MPC = theoretical model of MapReduce


• A distributed protocol is -MPC on -bit input of size  if:


•  total machines, each having local memory .


• Global memory .


• Input divided among  machines.


• Each of  rounds, machines perform perform computation on their inputs, send and 
receive messages simultaneously.


• Unbounded computation, total size of messages sent and received per machine .


• Think: 

(γ, δ) O(log N) N

q s = Θ(Nδ)

qs = O(N1+γ)

Θ(N/s)

r

≤ s

γ, δ = 0.01

Massively Parallel Computation [KSV10] 



Examples

• Dynamic programming, maximum matching, clustering, …


• Graph connectivity, diameter estimation, spanning forest in logarithmic 
rounds [Andoni, Song, Stein, Wang, Zhong ’18]

Massively Parallel Computation [KSV10] 



Our results

Theorem 1: Transformers 
simulate MPC protocols.

Theorem 2: MPC protocols 
simulate transformers.

Log-depth Transformers can 
solve connected components 
& pointer chasing

Transformers require log-depth 
to solve CC & PC under MPC 
conjecture

* GNNs, RNNs, sub-quadratic 
attention models require poly-depth!

* PC construction is 
empirically learnable by 
log-depth transformers!



Induction heads: Powers of multi-layer 
transformers
• Task: Complete most recent matching bigram:


• 


• Occurs frequently as primitive in trained transformers 
[Anthropic]


• Natural construction with 2 layers [BCBJB23]:


• Layer 1: identify previous token


• Layer 2: find most recent occurrence of token

IH(𝚍𝚊𝚌𝚌𝚊𝚋𝚌𝚍𝚍𝚌𝚊)N = 𝚋

[BCBJB23]



Parallelism and Pointer Hopping

Idea: Capture powers of depth with 
recursive and parallelizable tasks.  


Toy task: -hop induction heads:




MPC algorithms: Graph connectivity, 
minimum spanning tree, …

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

1. -depth constructions.


2.  depth lower bounds 
(conditional).


3. Separation from other 
architectures (GNN, multi-layer 
RNNs, some sub-quadratic-
attention transformers).

O(log k)
Ω(log k)

Results
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-depth   
construction
log(k) hopk

Toy task: -hop induction heads:




Theorem: There exists a 
transformer with depth 

 and width 
 computing .

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

L = O(log k)
m = O(1) hopk

a1a1 a2a2 a3a3 a4 … … ……

*a1a2a3 *** … … ……

a2a3*** a4a5
… … ……

a4a5*** a6a7 … … ……

a8a9*** a10a7 … … ……
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Learnability with 
gradient descent
Toy task: -hop induction heads:





Empirical setting:


• Curriculum learning mixture of 
, ,  

4 distinct tokens.


• Small GPT2 models: , 
, , 

.


• Training: 100K steps of Adam.


k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk k ∈ {0,1,…,16}

m = 128
H = 4 L ∈ {2,3,4,5,6}
N = 100

Sharp learnability threshold 
at  L = log2(k) + 2
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Self-attention head interpretability,  
, hop16 L = 6Learnability 

with gradient 
descent
Toy task: -hop induction 
heads:





Empirical setting:


• Curriculum learning 
mixture of , 

,  
4 distinct tokens.


• Small GPT2 models: 
, , 

, 
.


• Training: 100K steps of 
Adam.

k

hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk
k ∈ {0,1,…,16}

m = 128 H = 4
L ∈ {2,3,4,5,6}
N = 100
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Parallelism and Pointer Hopping
Further Questions

1. Which other tasks are 
solvable in  
depth? 


2. Do more efficient 
constructions exist?

log(k)
Reductions to and from 
Massively Parallel 
Computation (MPC) 
distributed computing 
protocol.



Relationships between transformers and MPC

Theorem 1 [MPC to Transformers]: Any -round -MPC protocol can 
be simulated by a transformer with depth  and width .


• Main technical challenge: coordinating message passing.


• Error correction via copies of messages in sparse locations on value 
vector .

R (γ, δ)
L = O(R) m = Õ(N4δ)

XV



Proof pictures…
Theorem 1 [MPC to Transformers]: Any -round -MPC protocol can 
be simulated by a transformer with depth  and width .

R (γ, δ)
L = O(R) m = Õ(N4δ)

Attention head
Attention head

Sparse propagation

Local

Softmax attention

Attention head

Local

Q(·)

K(·)>

V (·)

Multiple
hashing

sparsePropagate

2Y2 = 2 · sparsePropagate((z, S))2

2↵̄ 2Src 2Dest

Y1 = (0, 2)

�

gDest gMsggSrc↵̃

z1

1

0

1

0

1

0

1

0

0

2

2

1

1

1

1

hey

yo

hey

yo

S1 = (0, 2)

S3 = (2, 4)

�Dest Msg

yes

no

2

4

Sent3

gDest gMsggSrc↵̃

z3

0

1

0

1

1

0

3

3

3

3

2

2

4

4

yes

yes

no

no

Dest Msg

hey

yo

0

2

Sent1

2Msg

= z1 + z3

1

1

2

1

2

0

1

hey

yes

asd

no

wyz

yo

1

3

3

1

0

2

2

4

Src Msg

yo

yes

0

2

Rcvd2

 

1

Sent
�

(z, S) Y Rcvd
 

Machine 0

Machine 4

Machine 1

Machine 3

Machine 2



Relationships between transformers and MPC

Theorem 2 [Transformers to MPC]: Any transformer with depth  and width 
 can be simulated by an -round -MPC protocol.


• Key limitation: quadratic scaling in global memory.


• Proof idea: Simulate each layer with “embedding machines” and “inner 
product machines”

L
m = O(Nδ) O(L/δ) (1,2δ)



Proof pictures…
Theorem 2 [Transformers to MPC]: Any transformer with depth  and width 

 can be simulated by an -round -MPC protocol.
L

m = O(Nδ) O(L/δ) (1,2δ)

(Qh,i,Kh,i, Vh,i)

Token machines

Key/value
propagation
machines

Query
propagation
machines

Q>
h,iKh,i0

Inner product machines



-depth constructions for -diameter graph problemslog(k) k

Theorem 1 [MPC to Transformers]: Any -round -MPC protocol can 
be simulated by a transformer with depth  and width .

R (γ, δ)
L = O(R) m = Õ(N4δ)

Problem MPC [ASSWZ18] Transformer

Graph connectivity (0.01, 0.01)-MPC,  
R = O(log N). L = O(log N), m = O(N0.04).

Min spanning forest (0.01, 0.01)-MPC,  
R = O(log N). L = O(log N), m = O(N0.04).

hopk n/a L = O(log k), m = O(1).



Conjectured optimality of  depthlog(k)
Theorem 2 [Transformers to MPC]: Any transformer with depth  and width 

 can be simulated by an -round -MPC protocol.


Conjecture: Every MPC with protocol distinguishing -cycle graph 
from two -cycles uses  rounds.


➡ Transformers computing  require  or .


➡Transformers computing diameter graph connectivity require  
 or .

L
m = O(Nδ) O(L/δ) (1,2δ)

δ ∈ (0,1) N
N/2 r = Ω(log N)

hopk m = Ω(k0.49) L = Ω(log k)

mH = Ω(N0.49) L = Ω(log N)



Graph Neural Networks (GNNs)

• [Loukas19] relates GNNs to CONGEST distributed computing model.


• GNNs require  to evaluate subgraph connectivity.


• vs  for transformers.

L m = Ω̃( N)

L = log(N), m = N0.01

What about other architectures? 



RNNs, LSTMs, Sub-quadratic attention…

Theorem [GM09]: A -player -round -space protocol where 
players write blackboard messages in fixed order requires either 

 or  to solve .


➡Multi-layer RNNs require depth  or memory 
 to solve .


➡Performers require  or  to solve 
.


• If , then only Performers with attention 
runtime  can solve .

k r s

r ≥ k s = Ω(N/k6) hopk

L ≥ k
m = Ω(N/k6) hopk

L ≥ k mm′￼H = Ω(N/k6)
hopk

L, H = O(log N)
Ω̃(N2) hoplog N

What about other architectures? 



Our results

Theorem 1: Transformers 
simulate MPC protocols.

Theorem 2: MPC protocols 
simulate transformers.

Log-depth Transformers can 
solve connected components 
& pointer chasing

Transformers require log-depth 
to solve CC & PC under MPC 
conjecture

* GNNs, RNNs, sub-quadratic 
attention models require poly-depth!

* PC construction is 
empirically learnable by 
log-depth transformers!



Thank you
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