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Transformer architecture

 Sequence-to-sequence architecture

 Backbone of modern large language models

 Replaced RNNs and LSTMs as state-of-the-art
for NLP

 Characteristics:

e Highly parallelizable
e Core primitive: associative self-attention units

» Scalable to long context length (32K GPT-4,
100K Claude) oL ol ey e L o

Rogers et al 20

e Quadratic computational bottleneck



Transformer architecture

e Self-attention unit:

A(X) = softmax(XQKTXT)XV Coftmax Y
for input X € RY*4 R Nxm
model parameters O, K, V € | dxm

 Multi-headed I?ttention:
gX) =X+ ) fiy(X)

h=1

 Element-wise multi-layer perceptron AV

(MLP): ¢p(X) = (¢(x)), ..., Pp(xy)) RN

 Full transformer:
I(X) = (¢pro8r°---°81° Pp)X)



Transformer architecture

What is it?

o Self-attention unit;:
AX) = softmax(XOK!' X)XV for
input X € R4 model parameters
0,K,V € R¥>"

e Multi-headed attention:

H
gX) =X+ ) (X
h=1

 Element-wise multi-layer perceptron (MLP):

¢(X) — (¢(X1), ERE ¢(XN))

* Full transformer:
I(X) = (¢re8.°---° & ° Pp)X)

Our questions

Can the strengths and limitations of
transformers be understood via
function approximation??

1. Comparisons to other models
(RNNs, GNNs, o(N?) attention)

2. Representational impact of
m, H, L

3. Difficult tasks for transformers



Theoretical lenses on transformer abilities

1. Transformers as formal language recognizers
Transformers as automata

Transformers as circuits

AW N

. Transformers as communication protocols

* New perspective: view /N inputs as agents that communicate in regimented
manner; analysis via communication complexity and distributed
computation.

* Quantitative bounds w.r.t. width and depth; incorporates distinct transformer
structure; comparisons with other models.



Massively Parallel Computation [KSV10]
(not Multi-Party Computation)

« MPC = theoretical model of MapReduce
« A distributed protocol is (y, 0)-MPC on O(log N)-bit input of size N if:
» ¢ total machines, each having local memory s = (H)(N5).
- Global memory gs = O(N'*7).
» Input divided among ®(N/s) machines.

 Each of r rounds, machines perform perform computation on their inputs, send and
receive messages simultaneously.

 Unbounded computation, total size of messages sent and received per machine < .

» Think: 7,0 = 0.01



Massively Parallel Computation [KSV10]

Examples

 Dynamic programming, maximum matching, clustering, ...

 Graph connectivity, diameter estimation, spanning forest in logarithmic
rounds [Andoni, Song, Stein, Wang, Zhong ’18]



Our results

Theorem 1: Transformers Theorem 2: MPC protocols
simulate MPC protocols. simulate transformers.
Log-depth Transformers can Transformers require log-depth
solve connected components to solve CC & PC under MPC
& pointer chasing conjecture

PG construction is * GNNs, RNNs, sub-quadratic

empirically learnable by

log-depth transformers! attention models require poly-depth!



Induction heads: Powers of multi-layer
transformers

* Task: Complete most recent matching bigram:

- IH(daccabcddca)y =D Laver2 [« [ = < [ uy(®) [ws(o)
Attn2: 3, vy (Kjwp(k) -~ WEWE: S wp(Rws (k)T
* Occurs frequently as primitive in trained transformers 1 T e (b)" =
[Anthropic] y T —x
Mm: S pe_1p] ReSiduali Prediction
* Natural construction with 2 layers [BCBJB23]: Layer 0 | Pt Jws@)| [ 2 | w0 pr [ws(a
1 1 1

Sequence a b [- -] a b

* Layer 1: identify previous token
[BCBJB23]
* Layer 2: find most recent occurrence of token



Parallelism and Pointer Hopping

Idea: Capture powers of depth with
recursive and parallelizable tasks.

Toy task: k-hop induction heads:

hop,(...qa;. ¢...a,_1a...a105...01) = Ay,

MPC algorithms: Graph connectivity,
minimum spanning tree, ...
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Results

1.
2.

O(log k)-depth constructions.

Q(log k) depth lower bounds
(conditional).

Separation from other
architectures (GNN, multi-layer
RNNs, some sub-quadratic-
attention transformers).



log(k)-depth hop,

construction

Toy task: k-hop induction heads:

hop,(...aqiapyq...ar_1ay...a105...0;) = Qi1

baeb c’éﬁ@a.

Theorem: There exists a
transformer with depth

L = O(log k) and width
m = O(1) computing hop;,.

* * *
N . o . - .m -
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Learnability with
gradient descent

Toy task: k-hop induction heads:
hOpk( . .akak_|_1 .o .ak_lak. . .alaz. . .al) — ak_|_1
Empirical setting:

* Curriculum learning mixture of
hop,, k € {0,1,...,16},

4 distinct tokens.

 Small GPT2 models: m = 128,
H=4,Le {2,3,4,5,6},
N = 100.

* Jraining: 100K steps of Adam.
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Sharp learnability threshold
at L = logz(k) 2

DDDDDD




Learnability
with gradient
descent

Toy task: k-hop induction
heads:

hOpk( LAy g A4y .. A1Ay. . .al) = A4
Empirical setting:

* Curriculum learning
mixture of hop,,
ke {0,1,...,16},

4 distinct tokens.

« Small GPT2 models:
m= 128, H =4,

L e {2,3,45,6},
N = 100.

e Training: 100K steps of
Adam.

Layer £, head h
(S (S ~ ~ (S [ ~ (S [ ~ (S (S ~ ~ ~ ~ ~ (S ~ ~ (S (S ~ ~

oo sekrrrbwvLbwNDdMNMNNNMNERRERFHF

> 5> > T S OSSO OSSOSO SO S OSSO S SO S ST OSSO o
Il
~ W NP A WDNPFEPE P~ WWDNEPE DWW DNPEPE P WDNPRFREP & WDNPR

Self-attention head interpretability,
hop s, L = 6

(ALP find/), 16 for depth-6 transformer and X € dom(hop;6)
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Parallelism and Pointer Hopping

Further Questions

1. Which other tasks are Reductions to and from

solvable in log(k) Massively Parallel
depth? # Computation (MPC)
. distributed computing
2. Do more efficient

, _ rotocol.
constructions exist? P




Relationships between transformers and MPC

Theorem 1 [MPC to Transformers]: Any R-round (v, 0)-MPC protocol can
be simulated by a transformer with depth L = O(R) and width m = O(N™).

 Main technical challenge: coordinating message passing.

e Error correction via copies of messages in sparse locations on value
vector XV.



Proof pictures...

Theorem 1 [MPC to Transformers]: Any R-round (v, 0)-MPC protocol can
be simulated by a transformer with depth L = O(R) and width m = O(N™).

¢ sparsePropagate (0
z

Sent & (2,9 » Y & Rcvd
Machine 1 Sy = (0,2) Machine 0
& | Src | Dest | Msg
1 1 0 hey
Sent,
0
P || ¢ 1 1 2 yo
0 | hey | e————po Machine 2
j@—{ Sparse propagation 5 7o 0
1 1 0 hey 2Y; = 2 - sparsePropagate((z, S) )2
0 =21+ 23
Q() f 1 1 2 yo 2 | 2Src |2Dest| 2Msg
: 1 1 0 hey
Mult%ple 1 3 9 | yes Rcvds
. (©
? Machine 3 Sy = (2,4) 1 | 3 | 4 | no |— | 0 [ vo
a | Src | Dest | Msg 0
Softmax attention 0 1 1 9 yo
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Relationships between transformers and MPC

Theorem 2 [Transformers to MPC]: Any transformer with depth L and width
m = O(N°) can be simulated by an O(L/5)-round (1,25)-MPC protocol.

o Key limitation: quadratic scaling in global memory.

* Proof idea: Simulate each layer with “embedding machines” and “inner
product machines”



Proof pictures...

Theorem 2 [Transformers to MPC]: Any transformer with depth L and width
m = O(N°) can be simulated by an O(L/8)-round (1,25)-MPC protocol.

Token machines




log(k)-depth constructions for k-diameter graph problems

Theorem 1 [MPC to Transformers]: Any R-round (y, 0)-MPC protocol can
be simulated by a transformer with depth L = O(R) and width m = O(N™).

Problem

MPC [ASSWZ18]

Transformer

Graph connectivity

(0.01, 0.01)-MPC,

L =0(log N), m = O(/N0-04),

R =0O(log N).
: : (0.01, 0.01)-MPC, _ _ 0.04
Min spanning forest R = O(log N). L =0(log N), m = O(/N0-04),
hopx n/a L =0(og k), m=0(1).




Conjectured optimality of log(k) depth

Theorem 2 [Transformers to MPC]: Any transformer with depth L and width
m = O(N°) can be simulated by an O(L/8)-round (1,25)-MPC protocol.

Conjecture: Every MPC with o € (0,1 )protocol distinguishing N-cycle graph
from two N/2-cycles uses r = £2(log N) rounds.

= Transformers computing hop, require m = Q(k"*) or L = Q(log k).

= [ransformers computing diameter graph connectivity require
mH = Q(N"*) or L = Q(log N).



What about other architectures?
Graph Neural Networks (GNNs)

* [Loukas19] relates GNNs to CONGEST distributed computing model.
» GNNs require [A/m = Q(\/N ) to evaluate subgraph connectivity.

. vs L = log(N), m = N! for transformers.



What about other architectures?
RNNs, LSTMs, Sub-quadratic attention...

Theorem [GMO09]: A k-player r-round s-space protocol where
players write blackboard messages in fixed order requires either

r>kors = Q(N/k®) to solve hop;,.

= Multi-layer RNNs require depth L > k or memory
m = Q(N/k®) to solve hop;,.

t~
oy
=
BEERE

X
h
&3

h

.

= Performers require L > k or mm’H = Q(N/k®) to solve 5 (]
hop,

attention mechanism

e e e e e e e o e -

e If L, H = O(log N), then only Performers with attention
runtime Q(N?) can solve h()plog A



Our results

Theorem 1: Transformers Theorem 2: MPC protocols
simulate MPC protocols. simulate transformers.
Log-depth Transformers can Transformers require log-depth
solve connected components to solve CC & PC under MPC
& pointer chasing conjecture

PG construction is * GNNs, RNNs, sub-quadratic

empirically learnable by

log-depth transformers! attention models require poly-depth!
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