
Joint work with Daniel Hsu and Matus Telgarsky

Log-depth transformers and
parallel computation
Clayton Sanford
February 19th, 2024

Transformer architecture
• Sequence-to-sequence architecture

• Backbone of modern large language models

• Replaced RNNs and LSTMs as state-of-the-art

for NLP

• Characteristics:

• Highly parallelizable

• Core primitive: associative self-attention units

• Scalable to long context length (32K GPT-4,

100K Claude)

• Quadratic computational bottleneck

Vaswani et al ‘17

Rogers et al ’20

2

Transformer architecture
• Self-attention unit:

  
for input ,  
model parameters .

• Multi-headed attention:

• Element-wise multi-layer perceptron
(MLP):

• Full transformer:

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)

3

XQ

ℝN×m

XV

ℝN×m

KT XT

ℝN×m()softmax

XV

ℝN×m

softmax(XQKT XT)

ℝN×N

Transformer architecture
What is it?

• Self-attention unit:
 for  

input , model parameters
.

• Multi-headed attention:

• Element-wise multi-layer perceptron (MLP):

• Full transformer:

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)

Can the strengths and limitations of
transformers be understood via
function approximation?

1. Comparisons to other models

(RNNs, GNNs, attention)

2. Representational impact of

3. Difficult tasks for transformers

o(N2)

m, H, L

Our questions

Theoretical lenses on transformer abilities

1. Transformers as formal language recognizers

2. Transformers as automata

3. Transformers as circuits

4. Transformers as communication protocols

• New perspective: view inputs as agents that communicate in regimented
manner; analysis via communication complexity and distributed
computation.

• Quantitative bounds w.r.t. width and depth; incorporates distinct transformer
structure; comparisons with other models.

N

5

(not Multi-Party Computation)

• MPC = theoretical model of MapReduce

• A distributed protocol is -MPC on -bit input of size if:

• total machines, each having local memory .

• Global memory .

• Input divided among machines.

• Each of rounds, machines perform perform computation on their inputs, send and
receive messages simultaneously.

• Unbounded computation, total size of messages sent and received per machine .

• Think:

(γ, δ) O(log N) N

q s = Θ(Nδ)

qs = O(N1+γ)

Θ(N/s)

r

≤ s

γ, δ = 0.01

Massively Parallel Computation [KSV10]

Examples

• Dynamic programming, maximum matching, clustering, …

• Graph connectivity, diameter estimation, spanning forest in logarithmic
rounds [Andoni, Song, Stein, Wang, Zhong ’18]

Massively Parallel Computation [KSV10]

Our results

Theorem 1: Transformers
simulate MPC protocols.

Theorem 2: MPC protocols
simulate transformers.

Log-depth Transformers can
solve connected components
& pointer chasing

Transformers require log-depth
to solve CC & PC under MPC
conjecture

* GNNs, RNNs, sub-quadratic
attention models require poly-depth!

* PC construction is
empirically learnable by
log-depth transformers!

Induction heads: Powers of multi-layer
transformers
• Task: Complete most recent matching bigram:

•

• Occurs frequently as primitive in trained transformers
[Anthropic]

• Natural construction with 2 layers [BCBJB23]:

• Layer 1: identify previous token

• Layer 2: find most recent occurrence of token

IH(𝚍𝚊𝚌𝚌𝚊𝚋𝚌𝚍𝚍𝚌𝚊)N = 𝚋

[BCBJB23]

Parallelism and Pointer Hopping

Idea: Capture powers of depth with
recursive and parallelizable tasks.

Toy task: -hop induction heads:

MPC algorithms: Graph connectivity,
minimum spanning tree, …

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

1. -depth constructions.

2. depth lower bounds
(conditional).

3. Separation from other
architectures (GNN, multi-layer
RNNs, some sub-quadratic-
attention transformers).

O(log k)
Ω(log k)

Results

10

-depth  
construction
log(k) hopk

Toy task: -hop induction heads:

Theorem: There exists a
transformer with depth

 and width
 computing .

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

L = O(log k)
m = O(1) hopk

a1a1 a2a2 a3a3 a4 … … ……

*a1a2a3 *** … … ……

a2a3*** a4a5
… … ……

a4a5*** a6a7 … … ……

a8a9*** a10a7 … … ……
11

Learnability with
gradient descent
Toy task: -hop induction heads:

Empirical setting:

• Curriculum learning mixture of
, ,  

4 distinct tokens.

• Small GPT2 models: ,
, ,

.

• Training: 100K steps of Adam.

k
hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk k ∈ {0,1,…,16}

m = 128
H = 4 L ∈ {2,3,4,5,6}
N = 100

Sharp learnability threshold
at L = log2(k) + 2

12

Self-attention head interpretability,
, hop16 L = 6Learnability

with gradient
descent
Toy task: -hop induction
heads:

Empirical setting:

• Curriculum learning
mixture of ,

,  
4 distinct tokens.

• Small GPT2 models:
, ,

,
.

• Training: 100K steps of
Adam.

k

hopk(…akak+1…ak−1ak…a1a2…a1) = ak+1

hopk
k ∈ {0,1,…,16}

m = 128 H = 4
L ∈ {2,3,4,5,6}
N = 100

13

Parallelism and Pointer Hopping
Further Questions

1. Which other tasks are
solvable in
depth?

2. Do more efficient
constructions exist?

log(k)
Reductions to and from
Massively Parallel
Computation (MPC)
distributed computing
protocol.

Relationships between transformers and MPC

Theorem 1 [MPC to Transformers]: Any -round -MPC protocol can
be simulated by a transformer with depth and width .

• Main technical challenge: coordinating message passing.

• Error correction via copies of messages in sparse locations on value
vector .

R (γ, δ)
L = O(R) m = Õ(N4δ)

XV

Proof pictures…
Theorem 1 [MPC to Transformers]: Any -round -MPC protocol can
be simulated by a transformer with depth and width .

R (γ, δ)
L = O(R) m = Õ(N4δ)

Attention head
Attention head

Sparse propagation

Local

Softmax attention

Attention head

Local

Q(·)

K(·)>

V (·)

Multiple
hashing

sparsePropagate

2Y2 = 2 · sparsePropagate((z, S))2

2↵̄ 2Src 2Dest

Y1 = (0, 2)

�

gDest gMsggSrc↵̃

z1

1

0

1

0

1

0

1

0

0

2

2

1

1

1

1

hey

yo

hey

yo

S1 = (0, 2)

S3 = (2, 4)

�Dest Msg

yes

no

2

4

Sent3

gDest gMsggSrc↵̃

z3

0

1

0

1

1

0

3

3

3

3

2

2

4

4

yes

yes

no

no

Dest Msg

hey

yo

0

2

Sent1

2Msg

= z1 + z3

1

1

2

1

2

0

1

hey

yes

asd

no

wyz

yo

1

3

3

1

0

2

2

4

Src Msg

yo

yes

0

2

Rcvd2

1

Sent
�

(z, S) Y Rcvd

Machine 0

Machine 4

Machine 1

Machine 3

Machine 2

Relationships between transformers and MPC

Theorem 2 [Transformers to MPC]: Any transformer with depth and width
 can be simulated by an -round -MPC protocol.

• Key limitation: quadratic scaling in global memory.

• Proof idea: Simulate each layer with “embedding machines” and “inner
product machines”

L
m = O(Nδ) O(L/δ) (1,2δ)

Proof pictures…
Theorem 2 [Transformers to MPC]: Any transformer with depth and width

 can be simulated by an -round -MPC protocol.
L

m = O(Nδ) O(L/δ) (1,2δ)

(Qh,i,Kh,i, Vh,i)

Token machines

Key/value
propagation
machines

Query
propagation
machines

Q>
h,iKh,i0

Inner product machines

-depth constructions for -diameter graph problemslog(k) k

Theorem 1 [MPC to Transformers]: Any -round -MPC protocol can
be simulated by a transformer with depth and width .

R (γ, δ)
L = O(R) m = Õ(N4δ)

Problem MPC [ASSWZ18] Transformer

Graph connectivity (0.01, 0.01)-MPC,  
R = O(log N). L = O(log N), m = O(N0.04).

Min spanning forest (0.01, 0.01)-MPC,  
R = O(log N). L = O(log N), m = O(N0.04).

hopk n/a L = O(log k), m = O(1).

Conjectured optimality of depthlog(k)
Theorem 2 [Transformers to MPC]: Any transformer with depth and width

 can be simulated by an -round -MPC protocol.

Conjecture: Every MPC with protocol distinguishing -cycle graph
from two -cycles uses rounds.

➡ Transformers computing require or .

➡Transformers computing diameter graph connectivity require  
 or .

L
m = O(Nδ) O(L/δ) (1,2δ)

δ ∈ (0,1) N
N/2 r = Ω(log N)

hopk m = Ω(k0.49) L = Ω(log k)

mH = Ω(N0.49) L = Ω(log N)

Graph Neural Networks (GNNs)

• [Loukas19] relates GNNs to CONGEST distributed computing model.

• GNNs require to evaluate subgraph connectivity.

• vs for transformers.

L m = Ω̃(N)

L = log(N), m = N0.01

What about other architectures?

RNNs, LSTMs, Sub-quadratic attention…

Theorem [GM09]: A -player -round -space protocol where
players write blackboard messages in fixed order requires either

 or to solve .

➡Multi-layer RNNs require depth or memory
 to solve .

➡Performers require or to solve
.

• If , then only Performers with attention
runtime can solve .

k r s

r ≥ k s = Ω(N/k6) hopk

L ≥ k
m = Ω(N/k6) hopk

L ≥ k mm′￼H = Ω(N/k6)
hopk

L, H = O(log N)
Ω̃(N2) hoplog N

What about other architectures?

Our results

Theorem 1: Transformers
simulate MPC protocols.

Theorem 2: MPC protocols
simulate transformers.

Log-depth Transformers can
solve connected components
& pointer chasing

Transformers require log-depth
to solve CC & PC under MPC
conjecture

* GNNs, RNNs, sub-quadratic
attention models require poly-depth!

* PC construction is
empirically learnable by
log-depth transformers!

Thank you

References
[ACY23] Dana Angluin, David Chiang, Andy Yang. “Masked Hard-Attention Transformers and Boolean RASP Recognize Exactly the Star-Free Languages.” 2023.

[LAGKZ22] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang. “Transformers Learn Shortcuts to Automata.” 2022.

[MSS22] William Merrill, Ashish Sabharwal, Noah Smith. “Saturated Transformers are Constant-Depth Threshold Circuits.” 2022.

[BCBJB23] Alberto Bietti, Viven Cabannes, Diane Bouchacourt, Hervé Jégou, Léon Bottou. “Birth of a Transformer: A Memory Viewpoint.” 2023.

[ASSWZ18] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, Peilin Zhong. “Parallel Graph Connectivity and Log Diameter Rounds.” 2018.

[CLD+21] Krzysztof Choromanski, et al. “Rethinking Attention with Performers.” 2021.

[KSV10] Howard Karloff, Siddharth Suri, Sergei Vassilvitskii. A Model of Computation for MapReduce.” 2010.

[GKU19] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. “Conditional hardness results for massively parallel computation from distributed lower bounds.” 2019.
[PMB19] Jorge Pérez, Javier Marinković, and Pablo Barceló. “On the Turing completeness of modern neural network architectures.” 2019.

[YBR+20] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. “Are transformers universal approximators of sequence-to-sequence functions?” ICLR
2020.
[WCM22] Colin Wei, Yining Chen, and Tengyu Ma. “Statistically meaningful approximation: a case study on approximating turing machines with transformers.” NeurIPS 2022.
[BAG20] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. “On the ability and limitations of transformers to recognize formal languages.” EMNLP 2020.
[YPPN21] Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. “Self-attention networks can process bounded hierarchical languages.” ACL 2021.

[LAG+22] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. “Transformers learn shortcuts to automata.” 2022.
[HAF22] Yiding Hao, Dana Angluin, and Robert Frank. “Formal language recognition by hard attention transformers: Perspectives from circuit complexity.” 2022.
[EGKZ22] Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, and Cyril Zhang. “Inductive biases and variable creation in self-attention mechanisms.” ICML 2022.
[BPKP22] Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. “Simplicity bias in transformers and their ability to learn sparse boolean functions.” 2022.
[ZFB23] Ruiqi Zhang, Spencer Frei, Peter Bartlett. “Trained Transformers Learn Linear Models In-Context.” 2023.
[Lou19] Andreas Loukas. “What graph neural networks cannot learn: depth vs width.” 2019.

[XHLG18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How powerful are graph neural networks?” 2018.

[CBCB19] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. “On the equivalence between graph isomorphism testing and function approximation with GNNs.” NeurIPS 2019.

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. “Weisfeiler and leman go neural: Higher-order graph neural
networks.” AAAI 2019.

