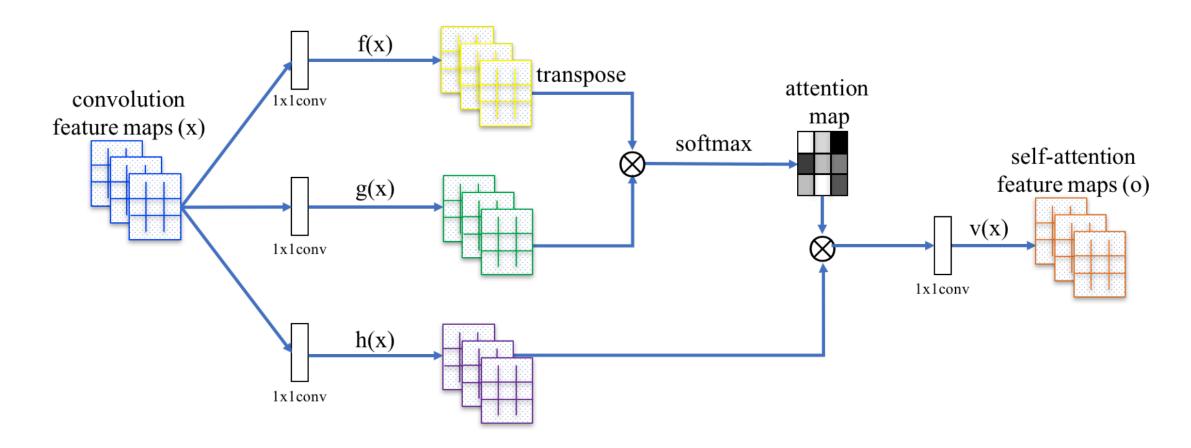
Representational Strengths and Limitations of Transformers Clayton Sanford May 18th, 2023

Joint work with Daniel Hsu and Matus Telgarsky

Transformer architecture What is it?

- Self-attention unit: $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention: $L(X) = X + \sum_{h=1}^{H} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$



Source: https://lilianweng.github.io/posts/2018-06-24-attention/

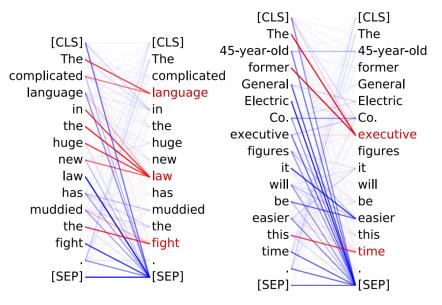
Transformer architecture What is it? **Key features**

- **Self-attention unit:** $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- **Multi-headed attention:** $L(X) = X + \sum f_h(X)$ h=1
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), \dots, \phi(x_N))$
- **Full transformer:** $T(X) = (\phi_D \circ L_D \circ \ldots \circ L_1 \circ \phi_0)(X)$

- **Computationally efficient training:** parallelizable training, unlike RNNs
- **Attuned to pairwise linguistic structure:** lacksquareself-attention encodes syntactic and semantic linkages between words*

Head 8-11

- Noun modifiers (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation



Backbone of modern NLP and vision models.

Transformer architecture What is it? Our questions

- Self-attention unit: $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention: $L(X) = X + \sum_{h=1}^{H} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Can the strengths and limitations of transformers be understood via function approximation?

- 1. Power of transformers over fullyconnected & recurrent NNs?
- 2. Representational impact of model parameters m, H, D?
- 3. Tasks that transformers struggle with?

Transformer architecture Our questions Our contributions

Can the strengths and limitations of transformers be understood via function approximation?

- 1. Power of transformers over fullyconnected & recurrent NNs for sequential tasks?
- 2. Representational impact of model parameters m, H, D?
- 3. Tasks that transformers struggle with?

Provide two "natural" tasks that exhibit key separations between transformers and other models:

- •Sparse averaging is efficient for transformers, inefficient for RNNs, FNNs.
- •Pair finding is easy for transformers, triple finding is not.

What is already known theoretically?

- Universality: Turing completeness of sufficiently large transformers [PMB19, YBR+20, WCM22]
- Formal language recognition:
 - Recognize counter languages [BAG20], bounded-depth Dyck languages [YPPN21], bounded-size automata [LAG+22]
 - Fixed-size transformer cannot represent infinite-depth Dyck languages [HAF22]
- Learnability: Generalization bounds via covering numbers [EGKZ22, BPKP22]
- Graph neural networks: Message-passing analogue to attention, equivalence to CONGEST distributed communication model [Lou19]

Transformer architecture Our questions Modeling decisions

Can the strengths and limitations of transformers be understood via function approximation?

- 1. Power of transformers over fullyconnected & recurrent NNs for sequential tasks?
- 2. Representational impact of model parameters m, H, D?
- 3. Tasks that transformers struggle with?

Model	Context length (N)	#layers <i>(D)</i>	#heads <i>(H)</i>	#param self-attn (m)	#paran MLP (k)
GPT-3	2048	96	96	128	12288
GPT-4	32k			$\widehat{\bullet}$	$\overline{\mathbf{\cdot}}$

• Context length $N \gg$ #params in self-attention unit (depth D, heads H, and embedding dim m)

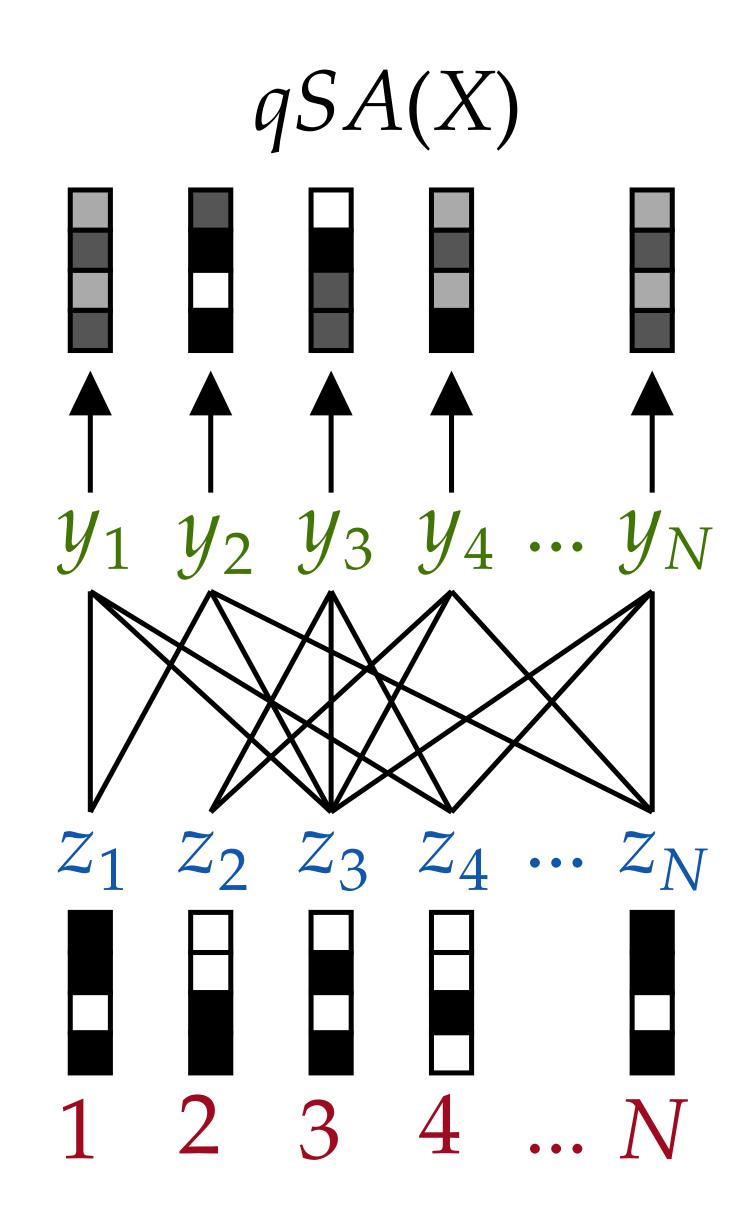
 \implies restricted pairwise computation between elements, model size independent of N

• #params in MLP $k \gg$ #params in self-attention

⇒ unlimited element-wise computational power

Part 1: Sparse averaging The task

Input: $X = ((y_1, z_1), \dots, (y_N, z_N))$ for $y_i \in {\binom{[N]}{q}}$ and $z_i \in \mathbb{R}^d$. $qSA(X)_i = \frac{1}{q} \sum_{j \in y_i} z_i$



Part 1: Sparse averaging The task Results

Input: $X = ((y_1, z_1), \dots, (y_N, z_N))$ for $y_i \in {[N] \choose q}$ and $z_i \in \mathbb{R}^d$. $qSA(X)_i = \frac{1}{q} \sum_{j \in y_i} z_i$

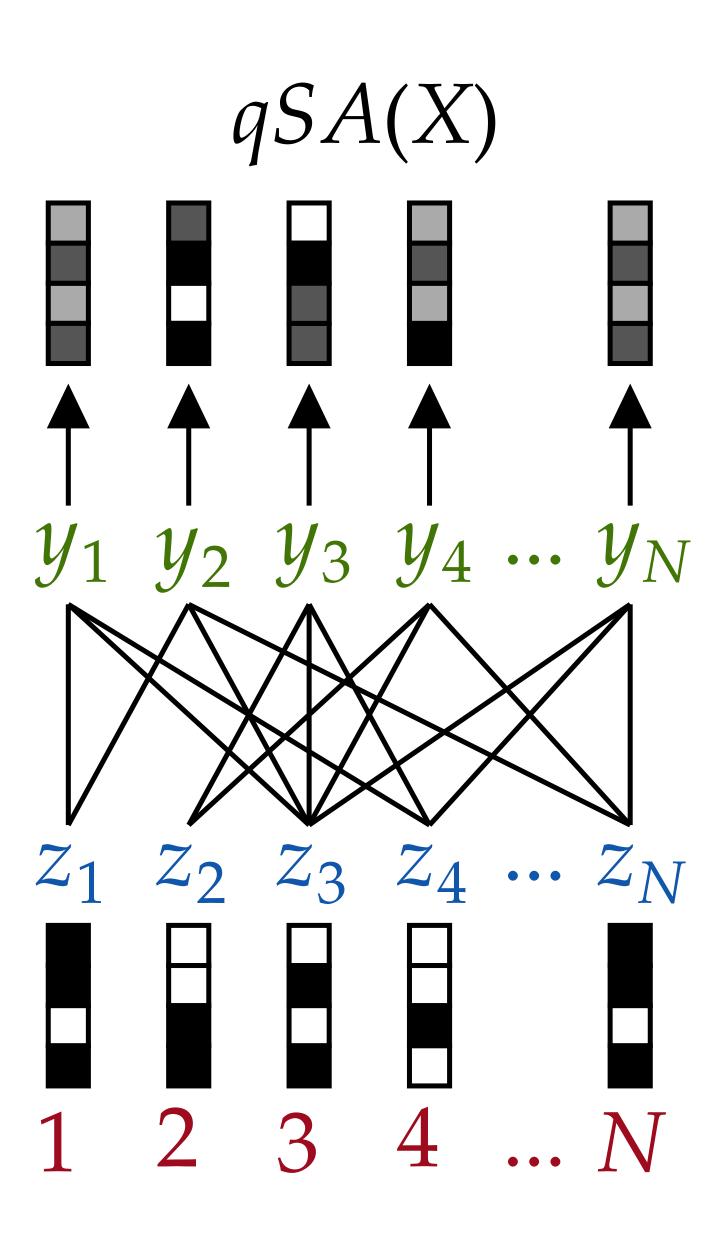
- 1. Inefficient representation with FNNs or RNNs.
 - Any FNN requires width $\Omega(Nd)$.
 - Any RNN requires $\Omega(N)$ -bit hidden state.
- 2. There exists a single unit of self attention that approximates qSA(X) iff embedding dimension $m \gtrsim q$.

Part 1: Sparse averaging The positive result

Theorem: For all q, there exists a self-attention unit *f* with embedding dimension $m = O(d + q \log N)$ that approximates qSA at all X with log(N)-bit precision* arithmetic.

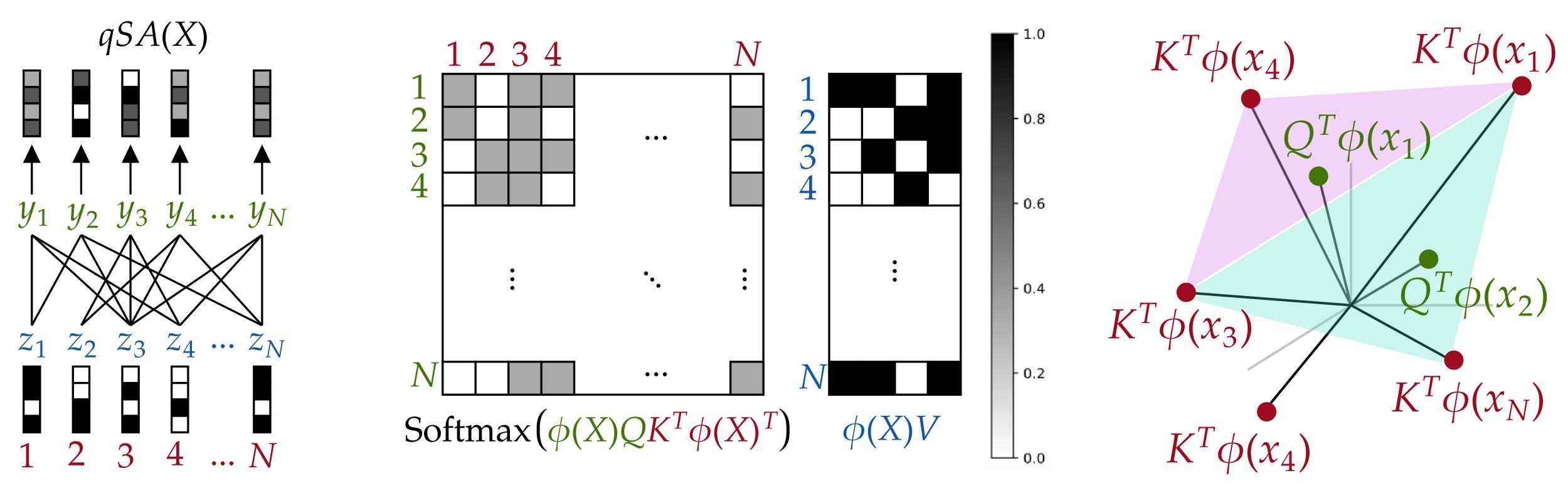
Think: $\log N, d \ll q \ll N$

*The log N factor can be eliminated by using infinite-bit precision.



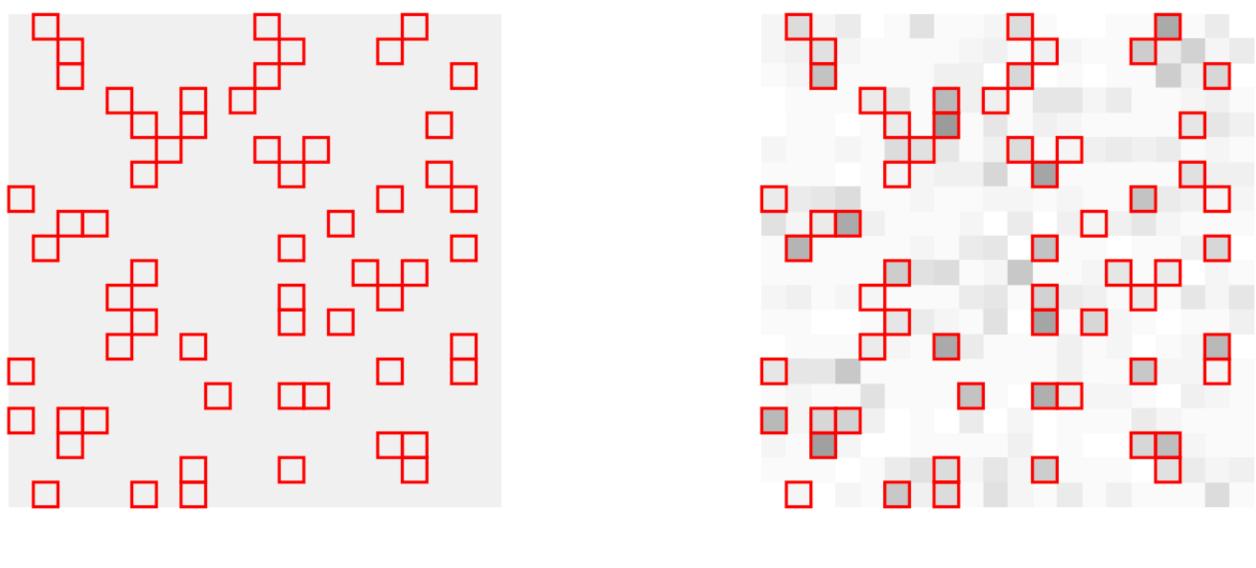
Part 1: Sparse averaging The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m = O(d + q \log N)$ that approximates qSA at all X with $\log(N)$ -bit precision* arithmetic.

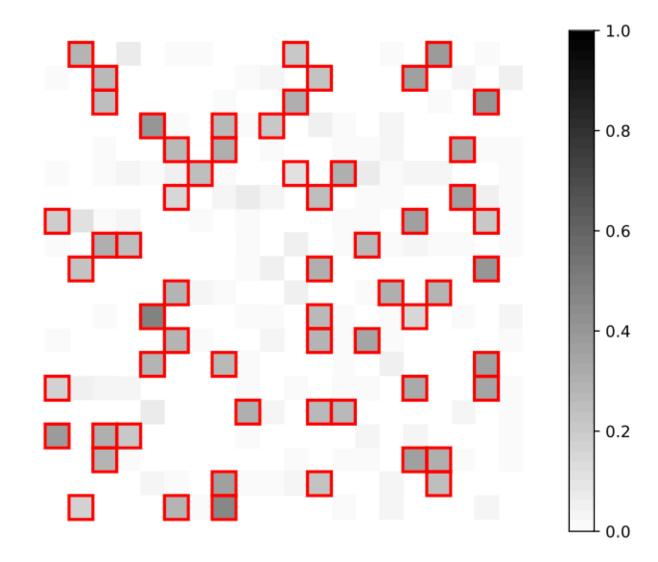


Part 1: Sparse averaging The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m = O(d + q \log N)$ that approximates qSA at all X with $\log(N)$ -bit precision* arithmetic.



(a) T = 0.



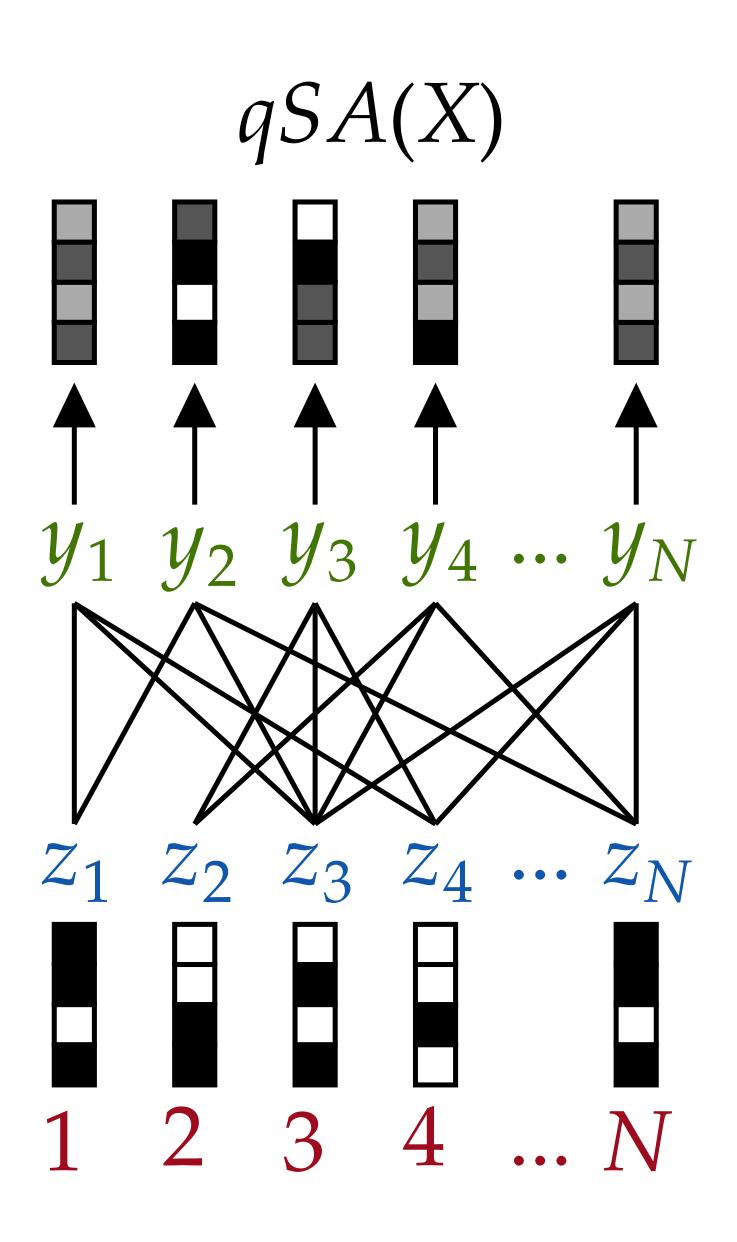
(b) T = 1000.

(c) T = 40000.

Part 1: Sparse averaging The negative result

Theorem: Any self-attention unit f that approximates qSA with log(N)-bit precision arithmetic requires embedding dimension $m \ge q/\log N$.

Proof by communication complexity...



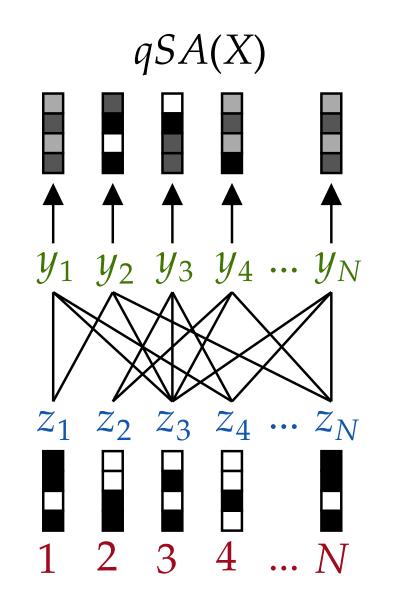
Part 1: Sparse averaging An aside on communication complexity

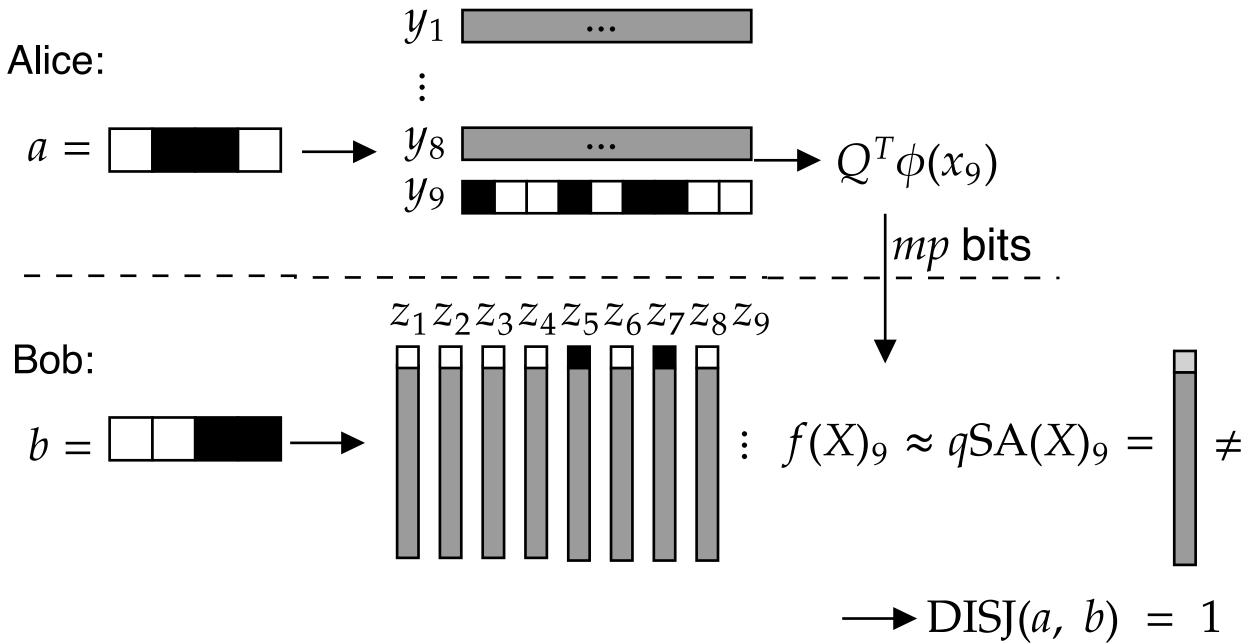
- Suppose Alice has $a \in \{0,1\}^n$ and Bob has $b \in \{0,1\}^n$ and they want to compute $DISJ(a, b) = \max a_i b_i$.
- Unlimited computation, bounded communication:
 - Alice and Bob take turns sending single bits of information to one another.
- What is the minimum rounds of communication?
 - $\leq n$ (Alice sends all bits to Bob)
 - $\geq n$ (rank of characteristic matrix)

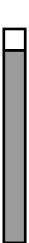
Part 1: Sparse averaging The negative result: proof

Theorem: Any self-attention unit *f* that approximates qSA with $\log(N)$ -bit precision arithmetic requires embedding dimension $m \ge q/\log N$.

- Create an $m \log N$ -bit protocol for DISJ(a, b) with n = q, assuming the existence of f.
- Alice encodes her input in subset $y_{2q+1} = \{2i + a_i 1 : i \in [q]\}.$ Alie
- Bob encodes his input as $z_{2i-1} = 2a_i 1, z_{2i} = -1$. All other values set arbitrarily.
- Alice sends Bob her $m \log N$ -bit query encoding B $Q(x_{2q+1})$.
- Bob computes f(X) and returns 1 iff $f(X)_{2q+1} \neq -1$.
- By CC bound, $m \log N \ge q$.







Part 1: Sparse averaging The task Results

Input: $X = ((y_1, z_1), \dots, (y_N, z_N))$ for $y_i \in {\binom{[N]}{q}}$ and $z_i \in \mathbb{R}^d$. $qSA(X)_i = \frac{1}{q} \sum_{j \in y_i} z_i$

- 1. Inefficient representation with FNNs or RNNs.
 - Any FNN requires width $\Omega(Nd)$.
 - Any RNN requires $\Omega(N)$ -bit hidden state.
- 2. There exists a single unit of self attention that approximates qSA(X) iff embedding dimension $m \gtrsim q$.

Part 2: Pair and triple finding The tasks Results

Input: $X = (x_1, ..., z_N) \in [M]^N$. Match $2(X)_i = 1\{ \exists j : x_i + x_j = 0 \}$ Match $3(X)_i = 1\{ \exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0 \}$

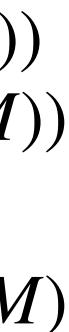
- 1. Efficient representation of Match2 with self-attention unit.
- 2. No efficient representation of Match3 with multi-headed self-attention.

Part 2: Pair and triple finding **Result #1 Proof Idea**

Match2(*X*)_{*i*} = 1{ $\exists j : x_i + x_j = 0$ }

Theorem: There exists self-attention unit f with input MLPs and embedding dimension m = O(1) such that f(X) = Match2(X).

- Choose embeddings: $Q(x_i) = c(\cos(2\pi x_i/M), \sin(2\pi x_i/M))$ $K(x_i) = (\cos(2\pi x_i/M), -\sin(2\pi x_i/M))$
- Then: $(Q(X)K(X)^T)_{i,i} = c \cos(2\pi(x_i + x_j)/M)$
- For sufficiently large *c*: softmax($Q(X)K(X)^T$)_{*i*,*j*} ≈ 0 iff $x_i + x_j \neq 0.$
- Caveat: need blank "<STOP>" token at the end.



Part 2: Pair and triple finding Result #2 Proof Idea

Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }

Theorem: Any *H*-headed self-attention with input and output MLPs and embedding dimension *m* and $O(\log N)$ -bit precision arithmetic approximating Match3 has $mH = \Omega(N/\log N)$.

- Similar communication complexity proof.
 - Embed DISJ(a, b) for n = (N 1)/2, where Alice knows $x_1, x_2, \dots, x_{(N-1)/2}$ and Bob knows $x_1, x_{(N+1)/2}, \dots, x_N$.
 - DISJ(a, b) = 1 iff triple $x_1 + x_i + x_{i+(N-1)/2} = 0.$
 - Alice sends Bob $O(mH \log N)$ bits from partially computed attention units.

Part 2: Pair and triple finding The tasks Results

Input: $X = (x_1, ..., z_N) \in [M]^N$. Match $2(X)_i = 1\{ \exists j : x_i + x_j = 0 \}$ Match $3(X)_i = 1\{ \exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0 \}$

- 1. Efficient representation of Match2 with self-attention unit.
- 2. No efficient representation of Match3 with multi-headed self-attention.
- 3. Efficient representation of Match3 under "third-order tensor attention" generalization.
- 4. Efficient representation of "assisted" Match3 with standard transformer.

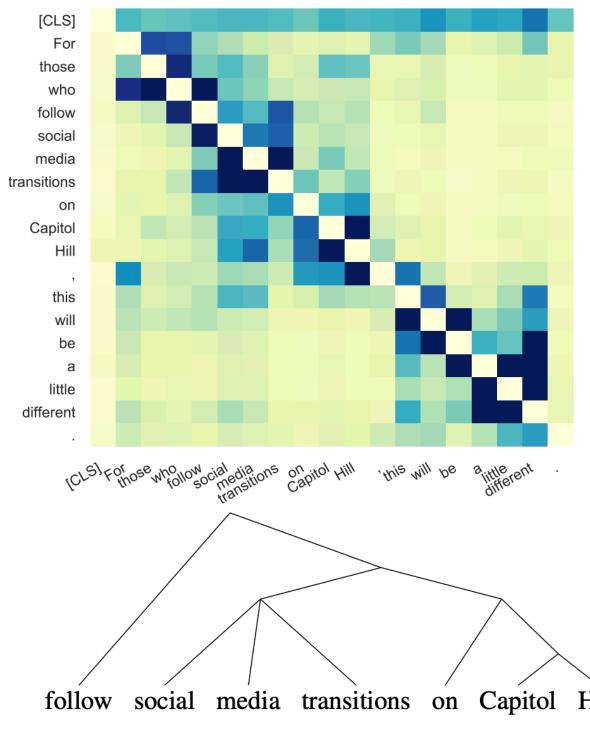
Part 2: Pair and triple finding The tasks [Future] Results

Input: $X = (x_1, ..., z_N) \in [M]^N$. Match2(*X*)_{*i*} = 1{ $\exists j : x_i + x_j = 0$ } Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }

Conjecture: Any *D*-depth *H*-headed transformer with embedding dimension *m* and $O(\log N)$ -bit precision arithmetic approximating Match3 has $mHD = \Omega(N/\log N).$

Future work and open questions

- Can more advanced communication complexity and distributed computing techniques be used to resolve the conjecture?
- How apt is the "sparse pairwise connectedness" framework for understanding language?
- Are there practical "intrinsically three-wise" learning tasks where modern transformers fail?



Thank you