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Transformer architecture
What is it? 

• Self-attention unit: 
 for  

input , model parameters 
.


• Multi-headed attention: 

 

• Element-wise multi-layer perceptron (MLP): 
 

• Full transformer: 
 

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

L(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕD ∘ LD ∘ … ∘ L1 ∘ ϕ0)(X)

Source: https://lilianweng.github.io/posts/2018-06-24-attention/ 

https://lilianweng.github.io/posts/2018-06-24-attention/


Transformer architecture
What is it? 

• Self-attention unit: 
 for  

input , model parameters 
.


• Multi-headed attention: 

 

• Element-wise multi-layer perceptron (MLP): 
 

• Full transformer: 
 

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

L(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕD ∘ LD ∘ … ∘ L1 ∘ ϕ0)(X)

• Computationally efficient training: 
parallelizable training, unlike RNNs 

• Attuned to pairwise linguistic structure:  
self-attention encodes syntactic and 
semantic linkages between words*


• Backbone of modern NLP and vision 
models.

Key features

*I am not a linguist! 
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Can the strengths and limitations of 
transformers be understood via 
function approximation? 

1. Power of transformers over fully-

connected & recurrent NNs? 

2. Representational impact of model 

parameters ? 

3. Tasks that transformers struggle 

with? 

m, H, D

Our questions



Transformer architecture
Our questions

Can the strengths and limitations of 
transformers be understood via 
function approximation? 

1. Power of transformers over fully-

connected & recurrent NNs for 
sequential tasks? 


2. Representational impact of model 
parameters ? 


3. Tasks that transformers struggle 
with? 

m, H, D

Provide two “natural” tasks that 
exhibit key separations between 
transformers and other models:

•Sparse averaging is efficient for 
transformers, inefficient for RNNs, 
FNNs.

•Pair finding is easy for 
transformers, triple finding is not.

Our contributions



What is already known theoretically? 
• Universality: Turing completeness of sufficiently large transformers 

[PMB19, YBR+20, WCM22]


• Formal language recognition: 

• Recognize counter languages [BAG20], bounded-depth Dyck languages 
[YPPN21], bounded-size automata [LAG+22]


• Fixed-size transformer cannot represent infinite-depth Dyck languages 
[HAF22]


• Learnability: Generalization bounds via covering numbers [EGKZ22, 
BPKP22]


• Graph neural networks: Message-passing analogue to attention, 
equivalence to CONGEST distributed communication model [Lou19]



Transformer architecture
Our questions

Can the strengths and limitations of 
transformers be understood via 
function approximation? 

1. Power of transformers over fully-

connected & recurrent NNs for 
sequential tasks? 


2. Representational impact of model 
parameters ? 


3. Tasks that transformers struggle 
with? 

m, H, D

• Context length   #params in self-attention unit  
(depth , heads , and embedding dim )


 restricted pairwise computation between 
elements, model size independent of 


• #params in MLP   #params in self-attention


 unlimited element-wise computational power

N ≫
D H m

⟹
N

k ≫

⟹

Modeling decisions

Model
Context 
length 

(N)

#layers 
(D)

#heads 
(H)

#param 
self-attn 

(m)

#param 
MLP 
(k)

GPT-3 2048 96 96 128 12288
GPT-4 32k 🙃 🙃 🙃 🙃



Part 1: Sparse averaging

Input:  for 

 and .


X = ((y1, z1), …, (yN, zN))

yi ∈ ([N]
q ) zi ∈ ℝd

qSA(X)i =
1
q ∑

j∈yi

zi

The task
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The task

1. Inefficient representation with 
FNNs or RNNs.


• Any FNN requires width .


• Any RNN requires -bit  
hidden state.


2. There exists a single unit of self 
attention that approximates 

 iff embedding 
dimension .

Ω(Nd)
Ω(N)

qSA(X)
m ≳ q

Results



Part 1: Sparse averaging

Theorem: For all , there exists a self-attention 
unit  with embedding dimension 

 that approximates  at 
all  with -bit precision* arithmetic.


Think: 


*The  factor can be eliminated by using 
infinite-bit precision.

q
f

m = O(d + q log N) qSA
X log(N)

log N, d ≪ q ≪ N

log N

The positive result
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Part 1: Sparse averaging

Theorem: Any self-attention unit  that 
approximates  with -bit precision 
arithmetic requires embedding dimension 

.

Proof by communication complexity…

f
qSA log(N)

m ≥ q/log N

The negative result



Part 1: Sparse averaging

• Suppose Alice has  and Bob has  and they 
want to compute .


• Unlimited computation, bounded communication: 


• Alice and Bob take turns sending single bits of information to 
one another.


• What is the minimum rounds of communication? 


•  (Alice sends all bits to Bob)


•  (rank of characteristic matrix) 

a ∈ {0,1}n b ∈ {0,1}n

DISJ(a, b) = max
i

aibi

≤ n
≥ n

An aside on communication complexity



Part 1: Sparse averaging
Theorem: Any self-attention unit  that approximates 

 with -bit precision arithmetic requires 
embedding dimension .


• Create an -bit protocol for  with 
, assuming the existence of .


• Alice encodes her input in subset 
.


• Bob encodes his input as 
. All other values set 

arbitrarily.


• Alice sends Bob her -bit query encoding 
.


• Bob computes  and returns 1 iff 
.


• By CC bound, .

f
qSA log(N)

m ≥ q/log N

m log N DISJ(a, b)
n = q f

y2q+1 = {2i + ai − 1 : i ∈ [q]}

z2i−1 = 2ai − 1, z2i = − 1

m log N
Q(x2q+1)

f(X)
f(X)2q+1 ≠ − 1

m log N ≥ q

The negative result: proof

Alice:

Bob:

bits

Alice:

Bob:

bits

Alice:

Bob:

bits

Alice:

Bob:

bits

Alice:

Bob:

bitsAlice:

Bob:

bits
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Part 2: Pair and triple finding

Input: .





X = (x1, …, zN) ∈ [M]N

Match2(X)i = 1{∃j : xi + xj = 0}

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 = 0}

The tasks

1. Efficient representation of 
 with self-attention unit.


2. No efficient representation of 
 with multi-headed self-

attention.

Match2

Match3

Results



Part 2: Pair and triple finding




Theorem: There exists self-attention 
unit  with input MLPs and embedding 
dimension  such that 

.

Match2(X)i = 1{∃j : xi + xj = 0}

f
m = O(1)

f(X) = Match2(X)

Result #1

• Choose embeddings:
 
 


• Then: 



• For sufficiently large :
 iff 

.


• Caveat: need blank “<STOP>" token 
at the end.

Q(xi) = c(cos(2πxi/M), sin(2πxi/M))
K(xi) = (cos(2πxi/M), − sin(2πxi/M))

(Q(X)K(X)T)i,j = c cos(2π(xi + xj)/M)

c
softmax(Q(X)K(X)T)i,j ≈ 0
xi + xj ≠ 0

Proof Idea



Part 2: Pair and triple finding




Theorem: Any -headed self-attention 
with input and output MLPs and 
embedding dimension  and 
-bit precision arithmetic approximating 

 has .

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 = 0}

H

m O(log N)

Match3 mH = Ω(N/log N)

Result #2

• Similar communication complexity 
proof.


• Embed  for , 
where Alice knows  
and Bob knows .


•  iff triple 
.


• Alice sends Bob  bits 
from partially computed attention 
units.

DISJ(a, b) n = (N − 1)/2
x1, x2…, x(N−1)/2

x1, x(N+1)/2, …, xN

DISJ(a, b) = 1
x1 + xi + xi+(N−1)/2 = 0

O(mH log N)

Proof Idea
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3. Efficient representation of 

 under “third-order tensor 
attention” generalization.


4. Efficient representation of 
“assisted”  with standard 
transformer.

Match2

Match3

Match3

Match3

Results



Part 2: Pair and triple finding

Input: .





X = (x1, …, zN) ∈ [M]N

Match2(X)i = 1{∃j : xi + xj = 0}
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The tasks

Conjecture: Any -depth -headed 
transformer with embedding dimension 

 and -bit precision arithmetic 
approximating  has 

. 

D H

m O(log N)
Match3

mHD = Ω(N/log N)

[Future] Results



Future work and open questions

• Can more advanced communication complexity and 
distributed computing techniques be used to resolve 
the conjecture?


• How apt is the “sparse pairwise connectedness” 
framework for understanding language? 


• Are there practical “intrinsically three-wise” learning 
tasks where modern transformers fail? 



Thank you


