Representational Strengths and Limitations of Transformers

Clayton Sanford
May 18th, 2023

Joint work with Daniel Hsu and Matus Telgarsky

Transformer architecture
 What is it?

- Self-attention unit:
$f(X)=\operatorname{softmax}\left(X Q K^{T} X^{T}\right) X V$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention:
$L(X)=X+\sum_{h=1}^{H} f_{h}(X)$
- Element-wise multi-layer perceptron (MLP):

Source: https://lilianweng.github.io/posts/2018-06-24-attention/ $\phi(X)=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)\right)$

- Full transformer:

$$
T(X)=\left(\phi_{D} \circ L_{D} \circ \ldots \circ L_{1} \circ \phi_{0}\right)(X)
$$

Transformer architecture
 What is it?
 Key features

- Self-attention unit:
$f(X)=\operatorname{softmax}\left(X Q K^{T} X^{T}\right) X V$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention:
$L(X)=X+\sum_{h=1}^{H} f_{h}(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X)=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)\right)$
- Full transformer:

$$
T(X)=\left(\phi_{D} \circ L_{D} \circ \ldots \circ L_{1} \circ \phi_{0}\right)(X)
$$

- Computationally efficient training: parallelizable training, unlike RNNs
- Attuned to pairwise linguistic structure:
self-attention encodes syntactic and semantic linkages between words*

- Backbone of modern NLP and vision models.

Transformer architecture
 What is it?
 Our questions

- Self-attention unit:
$f(X)=\operatorname{softmax}\left(X Q K^{T} X^{T}\right) X V$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention:
$L(X)=X+\sum_{h=1}^{H} f_{h}(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X)=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)\right)$
- Full transformer:

$$
T(X)=\left(\phi_{D} \circ L_{D} \circ \ldots \circ L_{1} \circ \phi_{0}\right)(X)
$$

Can the strengths and limitations of transformers be understood via function approximation?

1. Power of transformers over fullyconnected \& recurrent NNs?
2. Representational impact of model parameters m, H, D ?
3. Tasks that transformers struggle with?

Transformer architecture

Our questions

Can the strengths and limitations of transformers be understood via function approximation?

1. Power of transformers over fullyconnected \& recurrent NNs for sequential tasks?
2. Representational impact of model parameters m, H, D ?
3. Tasks that transformers struggle with?

Our contributions

Provide two "natural" tasks that exhibit key separations between transformers and other models:
-Sparse averaging is efficient for transformers, inefficient for RNNs, FNNs.
-Pair finding is easy for transformers, triple finding is not.

What is already known theoretically?

- Universality: Turing completeness of sufficiently large transformers [PMB19, YBR+20, WCM22]
- Formal language recognition:
- Recognize counter languages [BAG20], bounded-depth Dyck languages [YPPN21], bounded-size automata [LAG+22]
- Fixed-size transformer cannot represent infinite-depth Dyck languages [HAF22]
- Learnability: Generalization bounds via covering numbers [EGKZ22, BPKP22]
- Graph neural networks: Message-passing analogue to attention, equivalence to CONGEST distributed communication model [Lou19]

Transformer architecture

Our questions

Can the strengths and limitations of transformers be understood via function approximation?

1. Power of transformers over fullyconnected \& recurrent NNs for sequential tasks?
2. Representational impact of model parameters m, H, D ?
3. Tasks that transformers struggle with?

Modeling decisions

Model	Context length (\boldsymbol{N})	\#layers (D)	\#heads $\mathbf{(H)}$	\#param self-attn (\boldsymbol{m})	\#param MLP (\boldsymbol{k})
GPT-3	2048	96	96	128	12288
GPT-4	32 k	\div	\div	\div	\div

- Context length $N \gg$ \#params in self-attention unit (depth D, heads H, and embedding $\operatorname{dim} m$)
\Longrightarrow restricted pairwise computation between elements, model size independent of N
- \#params in MLP $k \gg$ \#params in self-attention
\Longrightarrow unlimited element-wise computational power

Part 1: Sparse averaging

The task

$$
\begin{aligned}
& \text { Input: } X=\left(\left(y_{1}, z_{1}\right), \ldots,\left(y_{N}, z_{N}\right)\right) \text { for } \\
& y_{i} \in\binom{[N]}{q} \text { and } z_{i} \in \mathbb{R}^{d} . \\
& \qquad q S A(X)_{i}=\frac{1}{q} \sum_{j \in y_{i}} z_{i}
\end{aligned}
$$

Part 1: Sparse averaging

The task

$$
\begin{aligned}
& \text { Input: } X=\left(\left(y_{1}, z_{1}\right), \ldots,\left(y_{N}, z_{N}\right)\right) \text { for } \\
& y_{i} \in\binom{[N]}{q} \text { and } z_{i} \in \mathbb{R}^{d} . \\
& \qquad q S A(X)_{i}=\frac{1}{q} \sum_{j \in y_{i}} z_{i}
\end{aligned}
$$

Results

1. Inefficient representation with FNNs or RNNs.

- Any FNN requires width $\Omega(N d)$.
- Any RNN requires $\Omega(N)$-bit hidden state.

2. There exists a single unit of self attention that approximates $q S A(X)$ iff embedding dimension $m \gtrsim q$.

Part 1: Sparse averaging

The positive result

Theorem: For all q, there exists a self-attention unit f with embedding dimension
$m=O(d+q \log N)$ that approximates $q S A$ at all X with $\log (N)$-bit precision* arithmetic.

Think: $\log N, d \ll q \ll N$
*The $\log N$ factor can be eliminated by using infinite-bit precision.

Part 1: Sparse averaging

The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m=O(d+q \log N)$ that approximates $q S A$ at all X with $\log (N)$ -bit precision* arithmetic.

Part 1: Sparse averaging

The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m=O(d+q \log N)$ that approximates $q S A$ at all X with $\log (N)$ -bit precision* arithmetic.

(a) $T=0$.

(b) $T=1000$.

(c) $T=40000$.

Part 1: Sparse averaging

The negative result

Theorem: Any self-attention unit f that approximates $q S A$ with $\log (N)$-bit precision arithmetic requires embedding dimension $m \geq q / \log N$.

Proof by communication complexity...
$q S A(X)$

Part 1: Sparse averaging

An aside on communication complexity

- Suppose Alice has $a \in\{0,1\}^{n}$ and Bob has $b \in\{0,1\}^{n}$ and they want to compute $\operatorname{DISJ}(a, b)=\max _{i} a_{i} b_{i}$.
- Unlimited computation, bounded communication:
- Alice and Bob take turns sending single bits of information to one another.
-What is the minimum rounds of communication?
- $\leq n$ (Alice sends all bits to Bob)
- $\geq n$ (rank of characteristic matrix)

Part 1: Sparse averaging
 The negative result: proof

Theorem: Any self-attention unit f that approximates $q S A$ with $\log (N)$-bit precision arithmetic requires embedding dimension $m \geq q / \log N$.

- Create an $m \log N$-bit protocol for $\operatorname{DISJ}(a, b)$ with $n=q$, assuming the existence of f.

- Alice encodes her input in subset $y_{2 q+1}=\left\{2 i+a_{i}-1: i \in[q]\right\}$.
- Bob encodes his input as
$z_{2 i-1}=2 a_{i}-1, z_{2 i}=-1$. All other values set arbitrarily.
- Alice sends Bob her $m \log N$-bit query encoding $Q\left(x_{2 q+1}\right)$.
- Bob computes $f(X)$ and returns 1 iff $f(X)_{2 q+1} \neq-1$.

Part 1: Sparse averaging

The task

$$
\begin{aligned}
& \text { Input: } X=\left(\left(y_{1}, z_{1}\right), \ldots,\left(y_{N}, z_{N}\right)\right) \text { for } \\
& y_{i} \in\binom{[N]}{q} \text { and } z_{i} \in \mathbb{R}^{d} . \\
& \qquad q S A(X)_{i}=\frac{1}{q} \sum_{j \in y_{i}} z_{i}
\end{aligned}
$$

Results

1. Inefficient representation with FNNs or RNNs.

- Any FNN requires width $\Omega(N d)$.
- Any RNN requires $\Omega(N)$-bit hidden state.

2. There exists a single unit of self attention that approximates $q S A(X)$ iff embedding dimension $m \gtrsim q$.

Part 2: Pair and triple finding

The tasks

Input: $X=\left(x_{1}, \ldots, z_{N}\right) \in[M]^{N}$.
$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j}=0\right\}$
$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}}=0\right\}$

Results

1. Efficient representation of Match2 with self-attention unit.
2. No efficient representation of Match3 with multi-headed selfattention.

Part 2: Pair and triple finding

Result \#1

$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j}=0\right\}$
Theorem: There exists self-attention unit f with input MLPs and embedding dimension $m=O(1)$ such that $f(X)=\operatorname{Match} 2(X)$.

Proof Idea

- Choose embeddings:

$$
\begin{aligned}
& Q\left(x_{i}\right)=c\left(\cos \left(2 \pi x_{i} / M\right), \sin \left(2 \pi x_{i} / M\right)\right) \\
& K\left(x_{i}\right)=\left(\cos \left(2 \pi x_{i} / M\right),-\sin \left(2 \pi x_{i} / M\right)\right)
\end{aligned}
$$

- Then:
$\left(Q(X) K(X)^{T}\right)_{i, j}=c \cos \left(2 \pi\left(x_{i}+x_{j}\right) / M\right)$
- For sufficiently large c : $\operatorname{softmax}\left(Q(X) K(X)^{T}\right)_{i, j} \approx 0$ iff $x_{i}+x_{j} \neq 0$.
- Caveat: need blank "<STOP>" token at the end.

Part 2: Pair and triple finding

Result \#2

$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}}=0\right\}$
Theorem: Any H-headed self-attention with input and output MLPs and embedding dimension m and $O(\log N)$ -bit precision arithmetic approximating Match3 has $m H=\Omega(N / \log N)$.

Proof Idea

- Similar communication complexity proof.
- Embed $\operatorname{DISJ}(a, b)$ for $n=(N-1) / 2$, where Alice knows $x_{1}, x_{2} \ldots, x_{(N-1) / 2}$ and Bob knows $x_{1}, x_{(N+1) / 2}, \ldots, x_{N}$.
- $\operatorname{DISJ}(a, b)=1$ iff triple $x_{1}+x_{i}+x_{i+(N-1) / 2}=0$.
- Alice sends Bob $O(m H \log N)$ bits from partially computed attention units.

Part 2: Pair and triple finding

The tasks

Input: $X=\left(x_{1}, \ldots, z_{N}\right) \in[M]^{N}$.
$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j}=0\right\}$
$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}}=0\right\}$

Results

1. Efficient representation of Match2 with self-attention unit.
2. No efficient representation of Match3 with multi-headed selfattention.
3. Efficient representation of Match3 under "third-order tensor attention" generalization.
4. Efficient representation of "assisted" Match3 with standard transformer.

Part 2: Pair and triple finding

The tasks

Input: $X=\left(x_{1}, \ldots, z_{N}\right) \in[M]^{N}$.
$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j}=0\right\}$
$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}}=0\right\}$
[Future] Results

Conjecture: Any D-depth H-headed transformer with embedding dimension m and $O(\log N)$-bit precision arithmetic approximating Match3 has $m H D=\Omega(N / \log N)$.

Future work and open questions

- Can more advanced communication complexity and distributed computing techniques be used to resolve the conjecture?
- How apt is the "sparse pairwise connectedness" framework for understanding language?
- Are there practical "intrinsically three-wise" learning tasks where modern transformers fail?

Thank you

