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Transformer architecture
What is it?

 Self-attention unit:
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Source: https://lilianweng.qgithub.io/posts/2018-06-24-attention/

 Element-wise multi-layer perceptron (MLP):

¢(X) — (¢(x1)9 ERE ¢(XN))

* Full transformer:
T(X) = (¢ o Lpo ... o L; o dp)(X)


https://lilianweng.github.io/posts/2018-06-24-attention/

Transformer architecture

What is it? Key features
« Self-attention unit;:  Computationally efficient training:
AX) = softmax(XOK!' X)XV for parallelizable training, unlike RNNs

input X € R4 model parameters

0,K,V € R¥>" » Attuned to pairwise linguistic structure:

self-attention encodes syntactic and

. Multi-headed attention: semantic linkages between words™

Head 8-11

- Noun modifiers (e.g., determiners) attend

H
to their noun
L(X) — X + E ﬁl(X) - 94.3% accuracy at the det relation
C
h= 1 cLS cLs 4s.

 Element-wise multi-layer perceptron (MLP):

PX) = (P(x1), ... P(xy))

e Full transformer:

T(X)=(¢ppeLpe...oL;ogy)(X)  Backbone of modern NLP and vision
models.

*I am not a linguist!



Transformer architecture

What is it? Our questions

* Self-attention unit: Can the strengths and limitations of
S (X)& ngﬂg}lv%(XQf | X )XthOF transformers be understood via
Inpu , MOdeEl pParameters : ' ' P,
0.K.V e R function approximation”

1. Power of transformers over fully-

« Multi-headed attention:
connected & recurrent NNs?

H
LX) =X+ Y fX) | .
1 2. Representational impact of model

« Element-wise multi-layer perceptron (MLP): parameters mi, H ] D?

X) =
PE) = (@), .. Pliy)) 3. Tasks that transformers struggle
* Full transformer: with?

T(X) = (¢, o Lpyo ... o Ly o dhg)(X)



Transformer architecture

Our contributions

Our questions

Can the strengths and limitations of
transformers be understood via
function approximation??

1. Power of transformers over fully-
connected & recurrent NNs for
sequential tasks?

2. Representational impact of model
parameters m, H, D?

3. Tasks that transformers struggle
with?

Provide two “natural” tasks that
exhibit key separations between
transformers and other models:

Sparse averaging is efficient for
transformers, inefficient for RNNSs,
FNNSs.

Pair finding is easy for
transformers, triple finding is not.



What is already known theoretically?

* Universality: Turing completeness of sufficiently large transformers
IPMB19, YBR+20, WCM22]

 Formal language recognition:

 Recognize counter languages [BAG20], bounded-depth Dyck languages
[YPPN21], bounded-size automata [LAG+22]

* Fixed-size transformer cannot represent infinite-depth Dyck languages
[HAF22]

* Learnability: Generalization bounds via covering numbers [EGKZ22,
BPKP22]

 Graph neural networks: Message-passing analogue to attention,
equivalence to CONGEST distributed communication model [Lou19]



Transformer architecture

Modeling decisions

Our questions

Can the strengths and limitations of
transformers be understood via
function approximation??

1. Power of transformers over fully-
connected & recurrent NNs for
sequential tasks?

2. Representational impact of model
parameters m, H, D?

3. Tasks that transformers struggle
with?

Context #param | #param

Model | length #'eg)‘)”s #h(e;)ds chf-attn II)VILP
(V) (m) (k)

GPT-3 2048 06 06 128 12288
GPT-4 32k & & @ @

e Context length N > #params in self-attention unit
(depth D, heads H, and embedding dim m)

—> restricted pairwise computation between
elements, model size independent of NV

 #params in MLP k > #params in self-attention

—> unlimited element-wise computational power




Part 1: Sparse averaging
The task

Input: X = ((y1,21)5 ---» (Vn» Zy)) foOr

N
y; € V] and z; € | d

q

1
gIA(X); = — Z 4
1 JEY;




Part 1: Sparse averaging

The task Results
Inout: X = L Z1)s ., . 7Zv)) for 1. Inefficient representation with
TN e (ZN 2 FNNs or RNNs.
. E dz; € R,
% q i » Any FNN requires width C2(/Nd).
] An . it
_ » Any RNN requires £2(/NV)-bit
gOAX); = q Z i hidden state.

JEY; . . :
2. There exists a single unit of self
attention that approximates

gSA(X) iff embedding
dimension m 2 q.



Part 1: Sparse averaging

The positive result

Theorem: For all g, there exists a self-attention
unit f with embedding dimension

m = O(d + glog N) that approximates gSA at
all X with 1og(/NV)-bit precision* arithmetic.

Think: logN,d < g < N

*The log N factor can be eliminated by using
iInfinite-bit precision.



Part 1: Sparse averaging

The positive result: proof by picture

Theorem: For all g, there exists a self-attention unit f with embedding
dimension m = O(d + g log N) that approximates gSA at all X with log(N)

-bit precision® arithmetic.
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Part 1: Sparse averaging

The positive result: proof by picture

Theorem: For all g, there exists a self-attention unit f with embedding

dimension m = O(d + g log N) that approximates gSA at all X with log(N)
-bit precision® arithmetic.

(@)1 = 0. (b) 1" = 1000.

H L

(c) 1" = 40000.

0.0



Part 1: Sparse averaging

The negative result

Theorem: Any self-attention unit f that

approximates gSA with log(/NV)-bit precision
arithmetic requires embedding dimension

m > gl/log N.

Proof by communication complexity...



Part 1: Sparse averaging

An aside on communication complexity

» Suppose Alice hasa € {0,1}" and Bob has b € {0,1}" and they

want to compute DISJ(a, b) = max a;b;

 Unlimited computation, bounded communication:

* Alice and Bob take turns sending single bits of information to
one another.

e What is the minimum rounds of communication?
« < n (Alice sends all bits to Bob)

> n (rank of characteristic matrix)



Part 1: Sparse averaging

The negative result: proof

Theorem: Any self-attention unit f that approximates
gSA with log(N)-bit precision arithmetic requires
embedding dimension m > g/log N.

» Create an m log N-bit protocol for DISJ(a, b) with
n = ¢, assuming the existence of f.

4S5 A(X)
A1
Ptrr ot

Y1 Yo Y3 Y4 .- YN

* Alice encodes her input in subset | Y1
Yage1 = 12i+a;— 1 :i € [q]}. Alice:
« Bob encodes his input as > QTgb(xg)
Zyi_1 = 2a; — 1, 7o, = — 1. All other values set Yol 1T |
arbitrarity. mp bits
» Alice sends Bob her m log N-bit query encoding Bob: 212223242.5262.72829 v
Q(X2411):
b = - f(X)s = 4SAX)s = [| #

« Bob computes f(X) and returns 1 iff

« By CC bound, mlogN > g.

—» DISJ(a, b) = 1



Part 1: Sparse averaging

The task Results
Inout: X = L Z1)s ., . 7Zv)) for 1. Inefficient representation with
TN e (ZN 2 FNNs or RNNs.
. E dz; € R,
% q i » Any FNN requires width C2(/Nd).
] An . it
_ » Any RNN requires £2(/NV)-bit
gOAX); = q Z i hidden state.

JEY; . . .
2. There exists a single unit of self

attention that approximates
gSA(X) iff embedding dimension
m 2 q.



Part 2: Pair and triple finding

The tasks Results

nput: X = (xy,...,zy) € [M]". 1. Efficient representation of
Match2(X), = 1{3j : x; + x, = 0} Match2 with self-attention unit.

o 2. No efficient representation of
Match3(X); = 113102 %+, +%, =0} Match3 with multi-headed self-
attention.



Part 2: Pair and triple finding

Result #1 Proof Idea
Match2(X), = 1{3j : x; + x; = 0} » Choose embeddings:

| Qx;) = c(cos(Lax;/M), sin(2rx./M))
Theorem: There exists self-attention K(x)) = (cos(2mx./M), — sin(27x./M))

unit f with input MLPs and embedding

dimension m = (O(1) such that
f(X) = Match2(X).

* Then:
(QX)KX)"); ; = c cosLa(x; + x;)/ M)

* For sufficiently large c:
softmax(Q(X)K(X)"), ; ~ O iff
x;+x; 7 0.

e Caveat: need blank “<STOP>" token
at the end.



Part 2: Pair and triple finding
Result #2 Proof Idea

Match3(X), = 1{3j,,j, : x; + X +x; = 0} - glirr(;](i)lfar communication complexity

Theorem: Any [{-headed self-attention N
with input and output MLPs and Embed DISJ(a, D) forn = (N = 1)/2.

embedding dimension m and O(log N)
-bit precision arithmetic approximating

Match3 has mH = C2(N/log N). . DISI(a, b) = 1 iff triple
Xy + X+ X v = 0.

where Alice KNnows X1, X;. .., Xn_1)2
and Bob knows X1 x(N—I—l)/Z’ e o .XN.

» Alice sends Bob O(mH log N) bits

from partially computed attention
units.



Part 2: Pair and triple finding

The tasks Results

nput: X = (xy,...,zy) € [M]". 1. Efficient representation of
Match2(X), = 1{3j : x; + x, = 0} Match2 with self-attention unit.

o 2. No efficient representation of
Match3(X); = 113102 %+, +%, =0} Match3 with multi-headed self-
attention.

3. Efficient representation of

Match3 under “third-order tensor
attention” generalization.

4. Efficient representation of

“assisted” Match3 with standard
transformer.



Part 2: Pair and triple finding

The tasks [Future] Results

Input: X = (xq, ..., 2y) € [M]". Conjecture: Any D-depth H-headed
. transformer with embedding dimension
Match2(X), = 1{dj : x. + x; =
ateh2(X); = 1372+ =0 m and O(log N )-bit precision arithmetic
Match3(X); = 1{3Jj.j, : x; +x; +x, =0} approximating Match3 has
mHD = Q(N/log N).



Future work and open questions

 Can more advanced communication complexity and -
distributed computing techniques be used to resolve g
the conjecture? ‘

« How apt is the “sparse pairwise connectedness”
framework for understanding language?

* Are there practical “intrinsically three-wise” learning
tasks where modern transformers fail?

follow social media transitions on Capitol Hill
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