Representational Strengths and Limitations of Transformers Clayton Sanford July 18th, 2023

Joint work with Daniel Hsu and Matus Telgarsky

Transformer architecture What is it?

- Self-attention unit: $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention: $L(X) = X + \sum_{h=1}^{H} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Source: https://lilianweng.github.io/posts/2018-06-24-attention/

Transformer architecture What is it? Our questions

- Self-attention unit: $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention: $L(X) = X + \sum_{h=1}^{H} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Can the strengths and limitations of transformers be understood via function approximation?

- 1. Power of transformers over fullyconnected & recurrent NNs?
- 2. Representational impact of model parameters m, H, D?
- 3. Tasks that transformers struggle with?

Transformer architecture Our questions Our contributions

Can the strengths and limitations of transformers be understood via function approximation?

- 1. Power of transformers over fullyconnected & recurrent NNs for sequential tasks?
- 2. Representational impact of model parameters m, H, D?
- 3. Tasks that transformers struggle with?

Provide two "natural" tasks that exhibit key separations between transformers and other models:

- •Sparse averaging is efficient for transformers, inefficient for RNNs, FNNs.
- •Pair finding is easy for transformers, triple finding is not.

What is already known theoretically?

- **Universality:** Turing completeness of sufficiently large transformers [PMB19, YBR+20, WCM22]
- Formal language recognition:
 - Recognize counter languages [BAG20], bounded-depth Dyck languages [YPPN21], bounded-size automata [LAG+22]
- **Fixed-size** transformer cannot represent infinite-depth Dyck languages [HAF22] • Learnability: Generalization bounds via covering numbers [EGKZ22, BPKP22] **Optimization:** Convergence to OLS in-context learning (linear self-attention) [ZFB23]
- **Graph neural networks:**
 - Message-passing analogue to attention, equivalence to CONGEST distributed communication model [Lou19]
 - Different order GNNs related to graph isomorphism testing [XHLG18, CVCB19, MRF+19]

Transformer architecture Our questions Modeling decisions

Can the strengths and limitations of transformers be understood via function approximation?

- 1. Power of transformers over fullyconnected & recurrent NNs for sequential tasks?
- 2. Representational impact of model parameters m, H, D?
- 3. Tasks that transformers struggle with?

Model	Context length (N)	#layers <i>(D)</i>	#heads <i>(H)</i>	#param self-attn (m)	#paran MLP (k)
GPT-3	2048	96	96	128	12288
GPT-4	32k			$\widehat{\bullet}$	$\overline{\mathbf{\cdot}}$

• Context length $N \gg$ #params in self-attention unit (depth D, heads H, and embedding dim m)

 \implies restricted pairwise computation between elements, model size independent of N

• #params in MLP $k \gg$ #params in self-attention

⇒ unlimited element-wise computational power

Part 1: Sparse averaging The task

Input:
$$X = ((y_1, z_1), ..., (y_N, z_N))$$

 $y_i \in {\binom{[N]}{q}}$

• $z_i \in \mathbb{R}^d$

Output: $qSA(X)_i = \frac{1}{q} \sum_{j \in y_i} z_i$

Part 1: Sparse averaging The task Results

Input:
$$X = ((y_1, z_1), ..., (y_N, z_N))$$

 $y_i \in {\binom{[N]}{q}}$

• $z_i \in \mathbb{R}^d$.

Output: $qSA(X)_i = \frac{1}{q} \sum_{j \in y_i} z_i$

- 1. Inefficient representation with FNNs or RNNs.
 - Any FNN requires width $\Omega(Nd)$.
 - Any RNN requires $\Omega(N)$ -bit hidden state.
- 2. Exists self-attention unit approximating qSA(X) iff embedding dim $m \gtrsim q$.

Part 2: Pair and triple finding The tasks Results

Input: $X = (x_1, ..., x_N) \in [M]^N$. Match $2(X)_i = 1\{ \exists j : x_i + x_j \equiv_M 0 \}$ Match $3(X)_i = 1\{ \exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0 \}$

- 1. Efficient representation of Match2 with self-attention unit.
- 2. No efficient representation of Match3 with multi-headed selfattention.
 - 3. Efficient representation of Match3 under 3-order attention.

Part 1: Sparse averaging The positive result

Theorem: For all q, there exists a self-attention unit *f* with embedding dimension $m = O(d + q \log N)$ that approximates qSA at all X with log(N)-bit precision* arithmetic.

Think: $\log(N), d \ll q \ll N$

*The log N factor can be eliminated by using infinite-bit precision.

Part 1: Sparse averaging The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m = O(d + q \log N)$ that approximates qSA at all X with $\log(N)$ -bit precision arithmetic.

Part 1: Sparse averaging The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m = O(d + q \log N)$ that approximates qSA at all X with $\log(N)$ -bit precision arithmetic.

(a) T = 0.

(b) T = 1000.

(c) T = 40000.

Part 1: Sparse averaging The negative result

Theorem: Any self-attention unit *f* that approximates qSA with log(N)-bit precision arithmetic requires embedding dimension $m \ge q/log N$.

Part 1: Sparse averaging The negative result: proof by picture

Theorem: Any self-attention unit f that approximates qSA with log(N)-bit precision arithmetic requires embedding dimension $m \ge q/\log N$.

▼
X)₉ ≈
$$q$$
SA(X)₉ = $\begin{bmatrix} \neq \\ \neq \end{bmatrix}$
→ DISJ(a, b) = 1

Part 1: Sparse averaging The task Results

Input:
$$X = ((y_1, z_1), ..., (y_N, z_N))$$

 $y_i \in {\binom{[N]}{q}}$

• $z_i \in \mathbb{R}^d$.

Output: $qSA(X)_i = \frac{1}{q} \sum_{j \in y_i} z_i$

- 1. Inefficient representation with FNNs or RNNs.
 - Any FNN requires width $\Omega(Nd)$.
 - Any RNN requires $\Omega(N)$ -bit hidden state.
- 2. Exists self-attention unit approximating qSA(X) iff embedding dim $m \gtrsim q$.

Part 2: Pair and triple finding The tasks Results

Input: $X = (x_1, ..., x_N) \in [M]^N$. Match $2(X)_i = 1\{ \exists j : x_i + x_j \equiv_M 0 \}$ Match $3(X)_i = 1\{ \exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0 \}$

- 1. Efficient representation of Match2 with self-attention unit.
- 2. No efficient representation of Match3 with multi-headed selfattention.
 - 3. Efficient representation of Match3 under 3-order attention.

Part 2: Pair and triple finding Positive result for Match2

Match2(*X*)_{*i*} = 1{ $\exists j : x_i + x_j \equiv_M 0$ }

Theorem: There exists self-attention unit *f* with input MLPs and embedding dimension m = O(1) such that f(X) = Match2(X).

Part 2: Pair and triple finding Positive result for Match2: proof by picture

Match2(*X*)_{*i*} = 1{ $\exists j : x_i + x_j \equiv_M 0$ }

Theorem: There exists self-attention unit f with input MLPs and embedding dimension m = O(1) such that f(X) = Match2(X).

Part 2: Pair and triple finding **Negative result for** Match3

Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0$ }

Theorem: Any *H*-headed self-attention with input and output MLPs and embedding dimension m and $O(\log N)$ -bit precision arithmetic approximating Match3 has $mH = \Omega(N/\log N)$.

Part 2: Pair and triple finding **Negative result for** Match3: proof by picture

Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0$ }

arithmetic approximating Match3 has $mH = \Omega(N/\log N)$.

• Consider Match3(X)₁ = 1{ $\exists j_1, j_2 : x_{j_1} + x_{j_2} \equiv_M 0$ } ($x_1 = 0$) for M = N + 2.

Suppose exists *H*-head self-attention layer $f(X)_1 = \psi(\sum f_h(\phi(X))_1 = \text{Match3}(X)_1$ having attention units f_h with Q_h, K_h, V_h .

Theorem: Any H-headed self-attention with input and output MLPs and embedding dimension m and $O(\log N)$ -bit precision

Part 2: Pair and triple finding **Positive result for** Match3 (with 3-order attention)

Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0$ } **3-order attention:** $f_{Q,K^1,K^2,V^1,V^2}(X) = \text{softmax}(XQ((XK^1) \otimes (XK^2))^T)((XV^1) \otimes (XV^2))$ $\mathbb{R}^{N \times m}$ $\mathbb{R}^{m \times N^2}$ \mathbb{R}^{N^2} $X \in \mathbb{R}^{N \times d}, Q, K^1, K^2 \in \mathbb{R}^{d \times m}, V_1, V_2 \in \mathbb{R}^d$

Theorem: There exists 3-order self-attention unit f with input MLPs and embedding dimension m = O(1) such that f(X) = Match3(X).

Part 2: Pair and triple finding Positive result for Match3 (with 3-order attention): proof sketch

Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0$ }

3-order attention: $f_{O,K^1,K^2,V^1,V^2}(X) = \operatorname{softmax}(XQ)$ ((XK^1) $\mathbb{R}^{N \times m}$

Theorem: There exists 3-order self-attention unit f with input MLPs and embedding dimension m = O(1) such that f(X) = Match3(X).

> $Q^T \phi(x) = (\cos(2\pi x/M), -\cos(2\pi x/M), \sin(2\pi x/M), \sin(2\pi x/M))$ $K^{1T}\phi(x) = (\cos(2\pi x/M), \sin(2\pi x/M), -\cos(2\pi x/M), \sin(2\pi x/M))$ $K^{2T}\phi(x) = (\cos(2\pi x/M), \sin(2\pi x/M), \sin(2\pi x/M), -\cos(2\pi x/M))$

$$) \otimes (XK^{2}))^{T})((XV^{1}) \otimes (XV^{2}))$$

$$\underbrace{\mathbb{R}^{m \times N^{2}}}_{\mathbb{R}^{N^{2}}}$$

 $(\phi(X)Q((\phi(X)K^{1})\otimes(\phi(X)K^{2}))^{T})_{i,j_{1},j_{2}} = \cos(2\pi(x_{i} + x_{j_{1}} + x_{j_{2}})/M)$

Part 2: Pair and triple finding The tasks Results

Input: $X = (x_1, ..., x_N) \in [M]^N$. Match $2(X)_i = 1\{ \exists j : x_i + x_j \equiv_M 0 \}$ Match $3(X)_i = 1\{ \exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0 \}$

- 1. Efficient representation of Match2 with self-attention unit.
- 2. No efficient representation of Match3 with multi-headed selfattention.
 - 3. Efficient representation of Match3 under 3-order attention.
 - 4. Efficient representation of "assisted" Match3 with standard transformer.

Part 2: Pair and triple finding **Negative conjecture for** Match3

Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0$ }

Conjecture: Any *D*-depth *H*-headed transformer with embedding dimension m and $O(\log N)$ -bit precision arithmetic approximating Match3 has $mHD = \Omega(N/\log N).$

Part 2: Pair and triple finding **Negative conjecture for** Match3: hazy intuition

Match3(X)_i = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} \equiv_M 0$ }

Conjecture: Any *D*-depth *H*-headed transformer with embedding dimension *m* and $O(\log N)$ -bit precision arithmetic approximating Match3 has $mHD = \Omega(N/\log N)$.

- Any transformer can be simulated with $O(mHD \log N)$ rounds of communication on a degree-3 CONGEST network with $O(N^2)$ nodes.
- Distribution over inputs with $M = N^4$:

(1) With probability 1/2, draw $x_i \sim [M]$ iid. (WHP Match3(X) = $\overrightarrow{0}$.)

(2) With probability 1/2, $x_i \equiv_M - x_{j_1} - x_{j_2}$ for $i, j_1, j_2 \sim [N]$. (Match3(X) $\neq \overrightarrow{0}$.)

- Indistinguishable unless some node "knows" all of x_i, x_{j_1}, x_{j_2} (?), WP $\approx 1/N^3$
- With $O(N^2)$ total nodes, need $\approx N$ rounds for distinction to occur.

Part 2: Pair and triple finding Negative conjecture for Match3: a comparable proof

For adjacency matrix $X \in \{0,1\}^{N \times N}$, $Cycle3(X)_i = 1\{ \exists j_1, j_2 : (i, j_1, j_1) \text{ is a cycle} \}$.

Theorem: Any *D*-depth *H*-headed transformer with embedding dimension *m* and $O(\log N)$ -bit precision arithmetic approximating Cycle3 has $mHD = \tilde{\Omega}(N)$.

- Any transformer can be simulated with $O(mHD \log N)$ rounds of communication on a degree-3 CONGEST network with $O(N^2)$ nodes.
- Once again, set-disjointness reduction.

Future work and open questions

- Can more advanced communication complexity and distributed computing techniques be used to resolve the conjecture?
- Can geometric approaches remove the dependence on bit-precision?
- How apt is the "sparse pairwise connectedness" framework for understanding language?
- Are there practical "intrinsically three-wise" learning tasks where modern transformers fail?

Thank you

References

[PMB19] Jorge Pérez, Javier Marinković, and Pablo Barceló. "On the Turing completeness of modern neural network architectures." 2019.

[YBR+20] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. "Are transformers universal approximators of sequenceto-sequence functions?" ICLR 2020.

[WCM22] Colin Wei, Yining Chen, and Tengyu Ma. "Statistically meaningful approximation: a case study on approximating turing machines with transformers." NeurIPS 2022.

[BAG20] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. "On the ability and limitations of transformers to recognize formal languages." EMNLP 2020. **[YPPN21]** Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. "Self-attention networks can process bounded hierarchical languages." ACL 2021.

[LAG+22] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. "Transformers learn shortcuts to automata." 2022. [HAF22] Yiding Hao, Dana Angluin, and Robert Frank. "Formal language recognition by hard attention transformers: Perspectives from circuit complexity." 2022.

[EGKZ22] Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, and Cyril Zhang. "Inductive biases and variable creation in self-attention mechanisms." ICML 2022.

[BPKP22] Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. "Simplicity bias in transformers and their ability to learn sparse boolean functions." 2022.

[ZFB23] Ruiqi Zhang, Spencer Frei, Peter Bartlett. "Trained Transformers Learn Linear Models In-Context." 2023.

[Lou19] Andreas Loukas. "What graph neural networks cannot learn: depth vs width." 2019.

[XHLG18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?" 2018.

[CBCB19] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. "On the equivalence between graph isomorphism testing and function approximation with GNNs." NeurIPS 2019.

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI 2019.

Appendix / Extra slides

Part 1: Sparse averaging An aside on communication complexity

- Suppose Alice has $a \in \{0,1\}^n$ and Bob has $b \in \{0,1\}^n$ and they want to compute $DISJ(a, b) = \max a_i b_i$.
- Unlimited computation, bounded communication:
 - Alice and Bob take turns sending single bits of information to one another.
- What is the minimum rounds of communication?
 - $\leq n$ (Alice sends all bits to Bob)
 - $\geq n$ (rank of characteristic matrix)

Part 1: Sparse averaging The negative result: proof

Theorem: Any self-attention unit *f* that approximates qSA with $\log(N)$ -bit precision arithmetic requires embedding dimension $m \ge q/\log N$.

- Create an $m \log N$ -bit protocol for DISJ(a, b) with n = q, assuming the existence of f.
- Alice encodes her input in subset $y_{2q+1} = \{2i + a_i 1 : i \in [q]\}.$ Alie
- Bob encodes his input as $z_{2i-1} = 2a_i 1, z_{2i} = -1$. All other values set arbitrarily.
- Alice sends Bob her $m \log N$ -bit query encoding B $Q(x_{2q+1})$.
- Bob computes f(X) and returns 1 iff $f(X)_{2q+1} \neq -1$.
- By CC bound, $m \log N \ge q$.

