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Transformer architecture
What is it? 

• Self-attention unit: 
 for  

input , model parameters 
.


• Multi-headed attention: 

 

• Element-wise multi-layer perceptron (MLP): 
 

• Full transformer: 
 

f(X) = softmax(XQKTXT)XV
X ∈ ℝN×d

Q, K, V ∈ ℝd×m

L(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕD ∘ LD ∘ … ∘ L1 ∘ ϕ0)(X)

Source: https://lilianweng.github.io/posts/2018-06-24-attention/ 

https://lilianweng.github.io/posts/2018-06-24-attention/
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Can the strengths and limitations of 
transformers be understood via 
function approximation? 

1. Power of transformers over fully-

connected & recurrent NNs? 

2. Representational impact of model 

parameters ? 

3. Tasks that transformers struggle 

with? 

m, H, D

Our questions



Transformer architecture
Our questions

Can the strengths and limitations of 
transformers be understood via 
function approximation? 

1. Power of transformers over fully-

connected & recurrent NNs for 
sequential tasks? 


2. Representational impact of model 
parameters ? 


3. Tasks that transformers struggle 
with? 

m, H, D

Provide two “natural” tasks that 
exhibit key separations between 
transformers and other models:

•Sparse averaging is efficient for 
transformers, inefficient for RNNs, 
FNNs.

•Pair finding is easy for 
transformers, triple finding is not.

Our contributions



What is already known theoretically? 
• Universality: Turing completeness of sufficiently large transformers [PMB19, YBR+20, 

WCM22]


• Formal language recognition: 

• Recognize counter languages [BAG20], bounded-depth Dyck languages [YPPN21], 
bounded-size automata [LAG+22]


• Fixed-size transformer cannot represent infinite-depth Dyck languages [HAF22]


• Learnability: Generalization bounds via covering numbers [EGKZ22, BPKP22]


• Optimization: Convergence to OLS in-context learning (linear self-attention) [ZFB23] 


• Graph neural networks:  

• Message-passing analogue to attention, equivalence to CONGEST distributed 
communication model [Lou19]


• Different order GNNs related to graph isomorphism testing [XHLG18, CVCB19, MRF+19]



Transformer architecture
Our questions

Can the strengths and limitations of 
transformers be understood via 
function approximation? 

1. Power of transformers over fully-

connected & recurrent NNs for 
sequential tasks? 


2. Representational impact of model 
parameters ? 


3. Tasks that transformers struggle 
with? 

m, H, D

• Context length   #params in self-attention unit  
(depth , heads , and embedding dim )


 restricted pairwise computation between 
elements, model size independent of 


• #params in MLP   #params in self-attention


 unlimited element-wise computational power

N ≫
D H m

⟹
N

k ≫

⟹

Modeling decisions

Model
Context 
length 

(N)

#layers 
(D)

#heads 
(H)

#param 
self-attn 

(m)

#param 
MLP 
(k)

GPT-3 2048 96 96 128 12288
GPT-4 32k 🙃 🙃 🙃 🙃



Part 1: Sparse averaging

Input:  


• 


• 


Output: 

X = ((y1, z1), …, (yN, zN))

yi ∈ ([N]
q )

zi ∈ ℝd

qSA(X)i =
1
q ∑

j∈yi

zi

The task
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Input:  


• 


• . 


Output: 

X = ((y1, z1), …, (yN, zN))

yi ∈ ([N]
q )

zi ∈ ℝd

qSA(X)i =
1
q ∑

j∈yi

zi

The task

1. Inefficient representation with 
FNNs or RNNs.


• Any FNN requires width .


• Any RNN requires -bit  
hidden state.


2. Exists self-attention unit 
approximating  iff 
embedding dim .

Ω(Nd)
Ω(N)

qSA(X)
m ≳ q

Results



Part 2: Pair and triple finding

Input: .





X = (x1, …, xN) ∈ [M]N

Match2(X)i = 1{∃j : xi + xj ≡M 0}

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

The tasks

1. Efficient representation of 
 with self-attention unit.


2. No efficient representation of 
 with multi-headed self-

attention.

3. Efficient representation of 

 under 3-order attention.

Match2

Match3

Match3

Results



Part 1: Sparse averaging

Theorem: For all , there exists a self-attention 
unit  with embedding dimension 

 that approximates  at 
all  with -bit precision* arithmetic.


Think: 


*The  factor can be eliminated by using 
infinite-bit precision.

q
f

m = O(d + q log N) qSA
X log(N)

log(N), d ≪ q ≪ N

log N

The positive result
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Part 1: Sparse averaging
The positive result: proof by picture

Theorem: For all , there exists a self-attention unit  with embedding dimension  that approximates 
 at all  with -bit precision arithmetic.

q f m = O(d + q log N)
qSA X log(N)



Part 1: Sparse averaging

Theorem: Any self-attention unit  that 
approximates  with -bit precision 
arithmetic requires embedding dimension 

.

f
qSA log(N)

m ≥ q/log N

The negative result
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1. Inefficient representation with 
FNNs or RNNs.
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• Any RNN requires -bit  
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Part 2: Pair and triple finding

Input: .
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Part 2: Pair and triple finding




Theorem: There exists self-attention unit  with input MLPs 
and embedding dimension  such that 

.

Match2(X)i = 1{∃j : xi + xj ≡M 0}

f
m = O(1)

f(X) = Match2(X)

Positive result for Match2



Part 2: Pair and triple finding




Theorem: There exists self-attention unit  with input MLPs and embedding dimension 
 such that .

Match2(X)i = 1{∃j : xi + xj ≡M 0}

f
m = O(1) f(X) = Match2(X)

Positive result for : proof by pictureMatch2

X ∈ [6]N

1
4
5
3

QTϕ(x1)

QTϕ(x2) QTϕ(x3)

QTϕ(x4)

KTϕ(x1)

KTϕ(x2) KTϕ(x3)

KTϕ(x4)

QTϕ(x) = (cos(2πx/M), sin(2πx/M))
KTϕ(x) = (cos(2πx/M), − sin(2πx/M))

*
softmax(ϕ(X)QKTϕ(X)T)

ϕ(xi)TQKTϕ(xj) = cos(2π(xi + xj)/2)

f(X) ∈ {0,1}N



Part 2: Pair and triple finding




Theorem: Any -headed self-attention with input and output MLPs and 
embedding dimension  and -bit precision arithmetic approximating 

 has .

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

H
m O(log N)

Match3 mH = Ω(N/log N)

Negative result for Match3



Part 2: Pair and triple finding




Theorem: Any -headed self-attention with input and output MLPs and embedding dimension  and -bit precision 
arithmetic approximating  has .


• Consider  ( ) for .


• Suppose exists -head self-attention layer  having attention units  with .


• Reduce (again) from set disjointness with .

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

H m O(log N)
Match3 mH = Ω(N/log N)

Match3(X)1 = 1{∃j1, j2 : xj1 + xj2 ≡M 0} x1 = 0 M = N + 2

H f(X)1 = ψ(∑
h

fh(ϕ(X))1 = Match3(X)1 fh Qh, Kh, Vh

a, b ∈ {0,1}n, n = (N − 1)/2

Negative result for : proof by pictureMatch3

Alice: a =

Bob: b =

X2,3,4,5 = 1 3 4 1

X1 = 0

X6,7,8,9 = 1 1 7 6

(N+1)/2

∑
i=1

exp(ϕ(x1)TQKTϕ(xi)T) ϕ(xi)TV ∈ ℝm, ∀h
(N+1)/2

∑
i=1

exp(ϕ(x1)TQKTϕ(xi)T) ∈ ℝ, ∀h

 bits(m + 1)H log N

f(X)1 = 1



Part 2: Pair and triple finding




3-order attention: 







Theorem: There exists 3-order self-attention unit  with input MLPs and 
embedding dimension  such that .

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

fQ,K1,K2,V1,V2(X) = softmax( XQ⏟
ℝN×m

((XK1) ⊗ (XK2))T

ℝm×N2

)((XV1) ⊗ (XV2))

ℝN2

X ∈ ℝN×d, Q, K1, K2 ∈ ℝd×m, V1, V2 ∈ ℝd

f
m = O(1) f(X) = Match3(X)

Positive result for  (with 3-order attention)Match3



Part 2: Pair and triple finding




3-order attention: 


Theorem: There exists 3-order self-attention unit  with input MLPs and embedding dimension 
 such that .

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

fQ,K1,K2,V1,V2(X) = softmax( XQ⏟
ℝN×m

((XK1) ⊗ (XK2))T

ℝm×N2

)((XV1) ⊗ (XV2))

ℝN2

f
m = O(1) f(X) = Match3(X)

Positive result for  (with 3-order attention): proof sketchMatch3

QTϕ(x) = (cos(2πx/M), − cos(2πx/M), sin(2πx/M), sin(2πx/M))
K1Tϕ(x) = (cos(2πx/M), sin(2πx/M), − cos(2πx/M), sin(2πx/M))
K2Tϕ(x) = (cos(2πx/M), sin(2πx/M), sin(2πx/M), − cos(2πx/M))

(ϕ(X)Q((ϕ(X)K1)⊗(ϕ(X)K2))T)i,j1,j2 = cos(2π(xi + xj1 + xj2)/M)



Part 2: Pair and triple finding

Input: .





X = (x1, …, xN) ∈ [M]N

Match2(X)i = 1{∃j : xi + xj ≡M 0}

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

The tasks

1. Efficient representation of 
 with self-attention unit.


2. No efficient representation of 
 with multi-headed self-

attention.

3. Efficient representation of 

 under 3-order attention.

4. Efficient representation of 

“assisted”  with standard 
transformer.

Match2

Match3

Match3

Match3

Results



Part 2: Pair and triple finding




Conjecture: Any -depth -headed transformer with embedding dimension 
 and -bit precision arithmetic approximating  has 

.

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

D H
m O(log N) Match3
mHD = Ω(N/log N)

Negative conjecture for Match3



Part 2: Pair and triple finding




Conjecture: Any -depth -headed transformer with embedding dimension  and 
-bit precision arithmetic approximating  has . 

• Any transformer can be simulated with  rounds of communication 
on a degree-3 CONGEST network with  nodes.


• Distribution over inputs with :


(1) With probability , draw  iid. (WHP .)


(2) With probability ,  for . ( .)


• Indistinguishable unless some node “knows” all of  (?), WP 


• With  total nodes, need  rounds for distinction to occur.

Match3(X)i = 1{∃j1, j2 : xi + xj1 + xj2 ≡M 0}

D H m
O(log N) Match3 mHD = Ω(N/log N)

O(mHD log N)
O(N2)

M = N4

1/2 xi ∼ [M] Match3(X) = ⃗0

1/2 xi ≡M − xj1 − xj2 i, j1, j2 ∼ [N] Match3(X) ≠ ⃗0

xi, xj1, xj2 ≈ 1/N3

O(N2) ≈ N

Negative conjecture for : hazy intuitionMatch3



Part 2: Pair and triple finding

For adjacency matrix , .


Theorem: Any -depth -headed transformer with embedding dimension  and 
-bit precision arithmetic approximating  has .


• Any transformer can be simulated with  rounds of communication 
on a degree-3 CONGEST network with  nodes.


• Once again, set-disjointness reduction.

X ∈ {0,1}N×N Cycle3(X)i = 1{∃j1, j2 : (i, j1, j1) is a cycle}

D H m
O(log N) Cycle3 mHD = Ω̃(N)

O(mHD log N)
O(N2)

Negative conjecture for : a comparable proofMatch3



Future work and open questions

• Can more advanced communication complexity and 
distributed computing techniques be used to resolve 
the conjecture?


• Can geometric approaches remove the dependence 
on bit-precision?


• How apt is the “sparse pairwise connectedness” 
framework for understanding language? 


• Are there practical “intrinsically three-wise” learning 
tasks where modern transformers fail? 



Thank you
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Appendix / Extra slides



Part 1: Sparse averaging

• Suppose Alice has  and Bob has  and they 
want to compute .


• Unlimited computation, bounded communication: 


• Alice and Bob take turns sending single bits of information to 
one another.


• What is the minimum rounds of communication? 


•  (Alice sends all bits to Bob)


•  (rank of characteristic matrix) 

a ∈ {0,1}n b ∈ {0,1}n

DISJ(a, b) = max
i

aibi

≤ n
≥ n

An aside on communication complexity



Part 1: Sparse averaging
Theorem: Any self-attention unit  that approximates 

 with -bit precision arithmetic requires 
embedding dimension .


• Create an -bit protocol for  with 
, assuming the existence of .


• Alice encodes her input in subset 
.


• Bob encodes his input as 
. All other values set 

arbitrarily.


• Alice sends Bob her -bit query encoding 
.


• Bob computes  and returns 1 iff 
.


• By CC bound, .

f
qSA log(N)

m ≥ q/log N

m log N DISJ(a, b)
n = q f

y2q+1 = {2i + ai − 1 : i ∈ [q]}

z2i−1 = 2ai − 1, z2i = − 1

m log N
Q(x2q+1)

f(X)
f(X)2q+1 ≠ − 1

m log N ≥ q

The negative result: proof

Alice:

Bob:

bits

Alice:

Bob:

bits

Alice:

Bob:

bits

Alice:

Bob:

bits

Alice:

Bob:

bitsAlice:

Bob:

bits


