Representational Strengths and
Limitations of Transformers

Clayton Sanford
July 18th, 2023

Joint work with Daniel Hsu and Matus Telgarsky



Transformer architecture
What is it?

 Self-attention unit:
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Source: https://lilianweng.qgithub.io/posts/2018-06-24-attention/

 Element-wise multi-layer perceptron (MLP):

¢(X) — (¢(x1)9 ERE ¢(XN))

* Full transformer:
T(X) = (¢ o Lpo ... o L; o dp)(X)


https://lilianweng.github.io/posts/2018-06-24-attention/

Transformer architecture

What is it? Our questions

* Self-attention unit: Can the strengths and limitations of
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Transformer architecture

Our contributions

Our questions

Can the strengths and limitations of
transformers be understood via
function approximation??

1. Power of transformers over fully-
connected & recurrent NNs for
sequential tasks?

2. Representational impact of model
parameters m, H, D?

3. Tasks that transformers struggle
with?

Provide two “natural” tasks that
exhibit key separations between
transformers and other models:

Sparse averaging is efficient for
transformers, inefficient for RNNSs,
FNNSs.

Pair finding is easy for
transformers, triple finding is not.



What is already known theoretically?

* Universality: Turing completeness of sufficiently large transformers [PMB19, YBR+20,
WCM22]

 Formal language recognition:

 Recognize counter languages [BAG20], bounded-depth Dyck languages [YPPN21],
bounded-size automata [LAG+22]

* Fixed-size transformer cannot represent infinite-depth Dyck languages [HAF22]
* Learnability: Generalization bounds via covering numbers [EGKZ22, BPKP22]
* Optimization: Convergence to OLS in-context learning (linear self-attention) [ZFB23]}

 Graph neural networks:

 Message-passing analogue to attention, equivalence to CONGEST distributed
communication model [Lou19]

 Different order GNNSs related to graph isomorphism testing [XHLG18, CVCB19, MRF+19]



Transformer architecture

Modeling decisions

Our questions

Can the strengths and limitations of
transformers be understood via
function approximation??

1. Power of transformers over fully-
connected & recurrent NNs for
sequential tasks?

2. Representational impact of model
parameters m, H, D?

3. Tasks that transformers struggle
with?

Context #param | #param

Model | length #'eg)‘)”s #h(e;)ds chf-attn II)VILP
(V) (m) (k)

GPT-3 2048 06 06 128 12288
GPT-4 32k & & @ @

e Context length N > #params in self-attention unit
(depth D, heads H, and embedding dim m)

—> restricted pairwise computation between
elements, model size independent of NV

 #params in MLP k > #params in self-attention

—> unlimited element-wise computational power




Part 1: Sparse averaging
The task
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Part 1: Sparse averaging

The task Results
Input: X = 71 ) eens (Vs Z 1. Inefficient representation with
i [N(](yl s oo O ) FNNs or RNN.
. Vi & ( )  Any FNN requires width €2(Nd).
q
. 7. € R4 » Any RNN requires L2(V)-bit
z ' hidden state.
1 . . .
Output: gSA(X), = — 2 Z, 2. Exists self-attention unit
q approximating gSA(X) iff

—
J=Vi embedding dim m 2 gq.



Part 2: Pair and triple finding

The tasks Results

nput: X = (xq, ..., xy) € [M]". 1. Efficient representation of
Match2(X); = 1{3j : x; + x; =, 0} Match?2 with self-attention unit.

o B 2. No efficient representation of
Match3(X); = 18 3], /5 1 % + X, + X3, = 05 Match3 with multi-headed self-
attention.

3. Efficient representation of
Match3 under 3-order attention.



Part 1: Sparse averaging

The positive result

Theorem: For all g, there exists a self-attention
unit f with embedding dimension

m = O(d + glog N) that approximates gSA at
all X with 1og(/NV)-bit precision* arithmetic.

Think: log(N),d < g < N

*The log N factor can be eliminated by using
iInfinite-bit precision.



Part 1: Sparse averaging

The positive result: proof by picture
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Theorem: For all g, there exists a self-attention unit f with embedding dimension m = O(d + g log N) that approximates

gSA at all X with 1og(/V)-bit precision arithmetic.
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Part 1: Sparse averaging

The positive result: proof by picture

Theorem: For all g, there exists a self-attention unit f with embedding dimension m = O(d + g log N) that approximates

gSA at all X with 1og(/V)-bit precision arithmetic.

i

(@)1 = 0. (b) 1" = 1000. (c) 1" = 40000.

0.0



Part 1: Sparse averaging

The negative result

Theorem: Any self-attention unit f that
approximates gSA with log(/NV)-bit precision

arithmetic requires embedding dimension

m > gl/log N.

L] 4D 43 44 -+ AN
1 2 3 4 ..N



Part 1: Sparse averaging

The negative result: proof by picture

Theorem: Any self-attention unit f that approximates gSA with log(/V)-bit
precision arithmetic requires embedding dimension m > g/log N.

| Y1
Alice: :
o= (] —» Vs Dm—,
Yo T I T R ¢(%)
L mp bits -
AV Y Y IV Y A YA
Bob: H[N v
b= - F(X)o ~ gSAX)s = || #

—» DISJ(a, b) = 1



Part 1: Sparse averaging

The task Results
Input: X = 71 ) eens (Vs Z 1. Inefficient representation with
P [N(](yl 1)s o0 O 2v) FNNs or RNN.
. Vi € ( ) » Any FNN requires width Q2(Nd).
q
. 7 € R » Any RNN requires L2(V)-bit
z ' hidden state.
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WAL q Z l approximating gSA(X) iff

JEY; embedding dim m > g.



Part 2: Pair and triple finding

The tasks Results

nput: X = (xq, ..., xy) € [M]". 1. Efficient representation of
Match2(X); = 1{3j : x; + x; =, 0} Match?2 with self-attention unit.

o B 2. No efficient representation of
Match3(X); = 18 3], /5 1 % + X, + X3, = 05 Match3 with multi-headed self-
attention.

3. Efficient representation of
Match3 under 3-order attention.



Part 2: Pair and triple finding

Positive result for Match?

Match2(X), = 1{3j : x; + x; =, 0}

Theorem: There exists self-attention unit f with input MLPs

and embedding dimension m = (1) such that
f(X) = Match2(X).



Part 2: Pair and triple finding

Positive result for Match2: proof by picture

Match2(X); = 1{3j : x; + x; =), 0}

Theorem: There exists self-attention unit f with input MLPs and embedding dimension
m = O(1) such that f(X) = Match2(X).
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Part 2: Pair and triple finding

Negative result for Match3

Match3(X); = 1{ Jj,/» : 5, + x;, +x;, =), 0]

Theorem: Any f{-headed self-attention with input and output MLPs and
embedding dimension m and O(log N )-bit precision arithmetic approximating

Match3 has mH = C2(N/log N).



Part 2: Pair and triple finding

Negative result for Match3: proof by picture

Match3(X);, = 1{ 3, o 1 x; +x;, +x;, =), 0}

Theorem: Any H-headed self-attention with input and output MLPs and embedding dimension m and O(log N )-bit precision
arithmetic approximating Match3 has mH = Q(N/log N).

» Consider Match3(X), = 1{3j,/, 1 x;, +x, =)0} ¢y =0)forM =N +2.

. Suppose exists H-head self-attention layer f(X); = w( Z f(@(X)),; = Match3(X), having attention units f, with Q,, K, V..
h

« Reduce (again) from set disjointness with a, b € {0,1}*, n = (N — 1)/2.

(N+1)/2
Y =|o Y exp(@(e) QKT P(x)T) p(x)TV € R™, Vh
1 —

=1 nvr1y2

nice: a=| N |— X..s=[1]3[4[1] — L wG@eKIwHER VI

i=1
l(m + 1)H log N bits

Bob: b = -_’ X789 =|1]1|7|6] —> f(X) =1 I




Part 2: Pair and triple finding

Positive result for Match3 (with 3-order attention)

Match3(X); = 1{ Jj,/» : 5, + x;, +x;, =), 0]
3-order attention:

fo.x k. v1v2(X) = softmax( XQ (XK') ® (XK)T)((XV!) ® (XV?)
R NXm \ R,/,;;NZ o R?VZ g

XeRY™ 0 ,K!' K? € R™™ V,,V, € R?

Theorem: There exists 3-order self-attention unit f with input MLPs and
embedding dimension m = O(1) such that f(X) = Match3(X).



Part 2: Pair and triple finding

Positive result for Match3 (with 3-order attention): proof sketch

Match3(X). = 1{ 3j;, ), : x; +X +Xx =y 0}

3-order attention: f;) 1 x> 1 12(X) = softmax( XQ ((XK") ® (XK*))")(XV") ® (XV?))

Theorem: There exists 3-order self-attention unit f with input MLPs and embedding dimension
m = O(1) such that f(X) = Match3(X).

O d(x) = (cos(Rax/M), — cos(2ax/M), sin(2ax/M), sin(2zx/M))
K'Y p(x) = (cos(Rax/M), sin(2zx/M), — cos(2ax/M), sin(2zx/M))
KT p(x) = (cos(Rax/M), sin(2zx/M), sin(2zx/M), — cos(2ax/M))

) 4
(¢(X)Q((¢(X)K1)®(¢(X)K2))T)l]1]2 = cos(2a(x; + X; T sz)/M)



Part 2: Pair and triple finding

The tasks Results

nput: X = (xq, ..., xy) € [M]". 1. Efficient representation of
Match2(X); = 1{3j : x; + x; =, 0} Match?2 with self-attention unit.

o 2. No efficient representation of
Match3(X); = 11 3/1./2 = %+ %+, =y 0} Match3 with multi-headed self-
attention.

3. Efficient representation of
Match3 under 3-order attention.

4. Efficient representation of

“assisted” Match3 with standard
transformer.



Part 2: Pair and triple finding

Negative conjecture for Match3

Match3(X); = 1{ Jj,/» : 5, + x;, +x;, =), 0]

Conjecture: Any D-depth /{-headed transformer with embedding dimension
m and O(log N)-bit precision arithmetic approximating Match3 has

mHD = CQ(N/log N).



Part 2: Pair and triple finding

Negative conjecture for Match3: hazy intuition

Match3(X). = 1{ 3j;, ), : x; +X +Xx =y 0}

Conjecture: Any D-depth H-headed transformer with embedding dimension m and e ) S
O(log N)-bit precision arithmetic approximating Match3 has mHD = C2(N/log N). TN T A

* Any transformer can be simulated with O(mHD log N) rounds of communication
on a degree-3 CONGEST network with O(N?) nodes.

. Distribution over inputs with M = N*;

444444

000000

(1) With probability 1/2, draw x; ~ [M] iid. (WHP Match3(X) = 0.)
(2) With probability 1/2, x; =;, — x; — x; for I, J1, J» ~ [IV]. Match3(X) # 6.)

- Indistinguishable unless some node “knows” all of x;, x; , x; (?), WP =~ 1/N?

e With O(Nz) total nodes, need ~ NN rounds for distinction to occur.



Part 2: Pair and triple finding

Negative conjecture for Match3: a comparable proof

For adjacency matrix X € {0,1}¥*V, Cycle3(X). = 1{ 3j;,), : (i,J;,J;) is acycle}.

Theorem: Any D-depth H-headed transformer with embedding dimension m and
O(log N)-bit precision arithmetic approximating Cycle3 has mHD = Q(N).

* Any transformer can be simulated with O(mHD log N) rounds of communication
on a degree-3 CONGEST network with O(N?) nodes.

* Once again, set-disjointness reduction.

000000

000000




Future work and open questions

 Can more advanced communication complexity and -
distributed computing techniques be used to resolve g
the conjecture? ‘

 Can geometric approaches remove the dependence
on bit-precision?

 How apt is the “sparse pairwise connectedness”
framework for understanding language?

* Are there practical “intrinsically three-wise” learning
tasks where modern transformers fail”? ollow socl meiia cansitions o Cogit N




Thank you
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Appendix / Extra slides



Part 1: Sparse averaging

An aside on communication complexity

» Suppose Alice hasa € {0,1}" and Bob has b € {0,1}" and they

want to compute DISJ(a, b) = max a;b;

 Unlimited computation, bounded communication:

* Alice and Bob take turns sending single bits of information to
one another.

e What is the minimum rounds of communication?
« < n (Alice sends all bits to Bob)

> n (rank of characteristic matrix)



Part 1: Sparse averaging

The negative result: proof

Theorem: Any self-attention unit f that approximates
gSA with log(N)-bit precision arithmetic requires
embedding dimension m > g/log N.

» Create an m log N-bit protocol for DISJ(a, b) with
n = ¢, assuming the existence of f.

4S5 A(X)
A1
Ptrr ot

Y1 Yo Y3 Y4 .- YN

* Alice encodes her input in subset | Y1
Yage1 = 12i+a;— 1 :i € [q]}. Alice:
« Bob encodes his input as > QTgb(xg)
Zyi_1 = 2a; — 1, 7o, = — 1. All other values set Yol 1T |
arbitrarity. mp bits
» Alice sends Bob her m log N-bit query encoding Bob: 212223242.5262.72829 v
Q(X2411):
b = - f(X)s = 4SAX)s = [| #

« Bob computes f(X) and returns 1 iff

« By CC bound, mlogN > g.

—» DISJ(a, b) = 1



