Representational Strengths and Limitations of Transformers

Clayton Sanford

July 18th, 2023

Joint work with Daniel Hsu and Matus Telgarsky

Transformer architecture
 What is it?

- Self-attention unit:
$f(X)=\operatorname{softmax}\left(X Q K^{T} X^{T}\right) X V$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention:
$L(X)=X+\sum_{h=1}^{H} f_{h}(X)$
- Element-wise multi-layer perceptron (MLP):

Source: https://lilianweng.github.io/posts/2018-06-24-attention/ $\phi(X)=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)\right)$

- Full transformer:

$$
T(X)=\left(\phi_{D} \circ L_{D} \circ \ldots \circ L_{1} \circ \phi_{0}\right)(X)
$$

Transformer architecture
 What is it?
 Our questions

- Self-attention unit:
$f(X)=\operatorname{softmax}\left(X Q K^{T} X^{T}\right) X V$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- Multi-headed attention:
$L(X)=X+\sum_{h=1}^{H} f_{h}(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X)=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)\right)$
- Full transformer:

$$
T(X)=\left(\phi_{D} \circ L_{D} \circ \ldots \circ L_{1} \circ \phi_{0}\right)(X)
$$

Can the strengths and limitations of transformers be understood via function approximation?

1. Power of transformers over fullyconnected \& recurrent NNs?
2. Representational impact of model parameters m, H, D ?
3. Tasks that transformers struggle with?

Transformer architecture

Our questions

Can the strengths and limitations of transformers be understood via function approximation?

1. Power of transformers over fullyconnected \& recurrent NNs for sequential tasks?
2. Representational impact of model parameters m, H, D ?
3. Tasks that transformers struggle with?

Our contributions

Provide two "natural" tasks that exhibit key separations between transformers and other models:
-Sparse averaging is efficient for transformers, inefficient for RNNs, FNNs.
-Pair finding is easy for transformers, triple finding is not.

What is already known theoretically?

- Universality: Turing completeness of sufficiently large transformers [PMB19, YBR+20, WCM22]
- Formal language recognition:
- Recognize counter languages [BAG20], bounded-depth Dyck languages [YPPN21], bounded-size automata [LAG+22]
- Fixed-size transformer cannot represent infinite-depth Dyck languages [HAF22]
- Learnability: Generalization bounds via covering numbers [EGKZ22, BPKP22]
- Optimization: Convergence to OLS in-context learning (linear self-attention) [ZFB23]
- Graph neural networks:
- Message-passing analogue to attention, equivalence to CONGEST distributed communication model [Lou19]
- Different order GNNs related to graph isomorphism testing [XHLG18, CVCB19, MRF+19]

Transformer architecture

Our questions

Can the strengths and limitations of transformers be understood via function approximation?

1. Power of transformers over fullyconnected \& recurrent NNs for sequential tasks?
2. Representational impact of model parameters m, H, D ?
3. Tasks that transformers struggle with?

Modeling decisions

Model	Context length (\boldsymbol{N})	\#layers (D)	\#heads $\mathbf{(H)}$	\#param self-attn (\boldsymbol{m})	\#param MLP (\boldsymbol{k})
GPT-3	2048	96	96	128	12288
GPT-4	32 k	\div	\div	\div	\div

- Context length $N \gg$ \#params in self-attention unit (depth D, heads H, and embedding $\operatorname{dim} m$)
\Longrightarrow restricted pairwise computation between elements, model size independent of N
- \#params in MLP $k \gg$ \#params in self-attention
\Longrightarrow unlimited element-wise computational power

Part 1: Sparse averaging

The task

Input: $X=\left(\left(y_{1}, z_{1}\right), \ldots,\left(y_{N}, z_{N}\right)\right)$
. $y_{i} \in\binom{[N]}{q}$

- $z_{i} \in \mathbb{R}^{d}$

Output: $q S A(X)_{i}=\frac{1}{q} \sum_{j \in y_{i}} z_{i}$

Part 1: Sparse averaging

The task

Input: $X=\left(\left(y_{1}, z_{1}\right), \ldots,\left(y_{N}, z_{N}\right)\right)$
. $y_{i} \in\binom{[N]}{q}$

- $z_{i} \in \mathbb{R}^{d}$.

Output: $q S A(X)_{i}=\frac{1}{q} \sum_{j \in y_{i}} z_{i}$

Results

1. Inefficient representation with FNNs or RNNs.

- Any FNN requires width $\Omega(N d)$.
- Any RNN requires $\Omega(N)$-bit hidden state.

2. Exists self-attention unit approximating $q S A(X)$ iff embedding $\operatorname{dim} m \gtrsim q$.

Part 2: Pair and triple finding

The tasks

Input: $X=\left(x_{1}, \ldots, x_{N}\right) \in[M]^{N}$.
$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j} \equiv_{M} 0\right\}$
$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$

Results

1. Efficient representation of Match2 with self-attention unit.
2. No efficient representation of Match3 with multi-headed selfattention.
3. Efficient representation of Match3 under 3-order attention.

Part 1: Sparse averaging

The positive result

Theorem: For all q, there exists a self-attention unit f with embedding dimension
$m=O(d+q \log N)$ that approximates $q S A$ at all X with $\log (N)$-bit precision* arithmetic.

Think: $\log (N), d \ll q \ll N$
*The $\log N$ factor can be eliminated by using infinite-bit precision.
$q S A(X)$

Part 1: Sparse averaging

The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m=O(d+q \log N)$ that approximates $q S A$ at all X with $\log (N)$-bit precision arithmetic.

Part 1: Sparse averaging

The positive result: proof by picture

Theorem: For all q, there exists a self-attention unit f with embedding dimension $m=O(d+q \log N)$ that approximates $q S A$ at all X with $\log (N)$-bit precision arithmetic.

(a) $T=0$.

(b) $T=1000$.

(c) $T=40000$.

Part 1: Sparse averaging

The negative result

Theorem: Any self-attention unit f that approximates $q S A$ with $\log (N)$-bit precision arithmetic requires embedding dimension $m \geq q / \log N$.

Part 1: Sparse averaging The negative result: proof by picture

Theorem: Any self-attention unit f that approximates $q S A$ with $\log (N)$-bit precision arithmetic requires embedding dimension $m \geq q / \log N$.

Part 1: Sparse averaging

The task

Input: $X=\left(\left(y_{1}, z_{1}\right), \ldots,\left(y_{N}, z_{N}\right)\right)$
. $y_{i} \in\binom{[N]}{q}$

- $z_{i} \in \mathbb{R}^{d}$.

Output: $q S A(X)_{i}=\frac{1}{q} \sum_{j \in y_{i}} z_{i}$

Results

1. Inefficient representation with FNNs or RNNs.

- Any FNN requires width $\Omega(N d)$.
- Any RNN requires $\Omega(N)$-bit hidden state.

2. Exists self-attention unit approximating $q S A(X)$ iff embedding $\operatorname{dim} m \gtrsim q$.

Part 2: Pair and triple finding

The tasks

Input: $X=\left(x_{1}, \ldots, x_{N}\right) \in[M]^{N}$.
$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j} \equiv_{M} 0\right\}$
$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$

Results

1. Efficient representation of Match2 with self-attention unit.
2. No efficient representation of Match3 with multi-headed selfattention.
3. Efficient representation of Match3 under 3-order attention.

Part 2: Pair and triple finding

Positive result for Match2

$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j} \equiv_{M} 0\right\}$
Theorem: There exists self-attention unit f with input MLPs and embedding dimension $m=O(1)$ such that $f(X)=\operatorname{Match} 2(X)$.

Part 2: Pair and triple finding

Positive result for Match2: proof by picture

$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j} \equiv_{M} 0\right\}$
Theorem: There exists self-attention unit f with input MLPs and embedding dimension $m=O(1)$ such that $f(X)=\operatorname{Match} 2(X)$.

Part 2: Pair and triple finding

Negative result for Match3

$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$
Theorem: Any H-headed self-attention with input and output MLPs and embedding dimension m and $O(\log N)$-bit precision arithmetic approximating Match3 has $m H=\Omega(N / \log N)$.

Part 2: Pair and triple finding

Negative result for Match3: proof by picture

$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$
Theorem: Any H-headed self-attention with input and output MLPs and embedding dimension m and $O(\log N)$-bit precision arithmetic approximating Match3 has $m H=\Omega(N / \log N)$.

- Consider $\operatorname{Match} 3(X)_{1}=1\left\{\exists j_{1}, j_{2}: x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}\left(x_{1}=0\right)$ for $M=N+2$.
- Suppose exists H-head self-attention layer $f(X)_{1}=\psi\left(\sum_{h} f_{h}(\phi(X))_{1}=\operatorname{Match} 3(X)_{1}\right.$ having attention units f_{h} with Q_{h}, K_{h}, V_{h}.
- Reduce (again) from set disjointness with $a, b \in\{0,1\}^{n}, n=(N-1) / 2$.

Part 2: Pair and triple finding

Positive result for Match3 (with 3-order attention)

$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$
3-order attention:
$f_{Q, K^{1}, K^{2}, V^{1}, V^{2}}(X)=\operatorname{softmax}(\underbrace{X Q}_{\mathbb{R}^{N \times m}} \underbrace{\left.\left(\left(X K^{1}\right) \otimes\left(X K^{2}\right)\right)^{T}\right)}_{\mathbb{R}^{m \times N^{2}}} \underbrace{\left(\left(X V^{1}\right) \otimes\left(X V^{2}\right)\right)}_{\mathbb{R}^{N^{2}}}$
$X \in \mathbb{R}^{N \times d}, Q, K^{1}, K^{2} \in \mathbb{R}^{d \times m}, V_{1}, V_{2} \in \mathbb{R}^{d}$
Theorem: There exists 3-order self-attention unit f with input MLPs and embedding dimension $m=O(1)$ such that $f(X)=\operatorname{Match} 3(X)$.

Part 2: Pair and triple finding

Positive result for Match3 (with 3-order attention): proof sketch

$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$
3-order attention: $f_{Q, K^{1}, K^{2}, V^{1}, V^{2}}(X)=\operatorname{softmax}(\underbrace{X Q}\left(\left(X K^{1}\right) \otimes\left(X K^{2}\right)\right)^{T})\left(\left(X V^{1}\right) \otimes\left(X V^{2}\right)\right)$
$\mathbb{R}^{N \times m} \mathbb{R}^{m \times N^{2}} \mathbb{R}^{N^{2}}$
Theorem: There exists 3-order self-attention unit f with input MLPs and embedding dimension $m=O(1)$ such that $f(X)=\operatorname{Match} 3(X)$.

$$
\begin{gathered}
Q^{T} \phi(x)=(\cos (2 \pi x / M),-\cos (2 \pi x / M), \sin (2 \pi x / M), \sin (2 \pi x / M)) \\
K^{1 T} \phi(x)=(\cos (2 \pi x / M), \sin (2 \pi x / M),-\cos (2 \pi x / M), \sin (2 \pi x / M)) \\
K^{2 T} \phi(x)=(\cos (2 \pi x / M), \sin (2 \pi x / M), \sin (2 \pi x / M),-\cos (2 \pi x / M)) \\
\downarrow
\end{gathered}
$$

Part 2: Pair and triple finding

The tasks

Input: $X=\left(x_{1}, \ldots, x_{N}\right) \in[M]^{N}$.
$\operatorname{Match} 2(X)_{i}=1\left\{\exists j: x_{i}+x_{j} \equiv_{M} 0\right\}$
$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$

Results

1. Efficient representation of Match2 with self-attention unit.
2. No efficient representation of Match3 with multi-headed selfattention.
3. Efficient representation of Match3 under 3-order attention.
4. Efficient representation of "assisted" Match3 with standard transformer.

Part 2: Pair and triple finding

Negative conjecture for Match3

$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$
Conjecture: Any D-depth H-headed transformer with embedding dimension m and $O(\log N)$-bit precision arithmetic approximating Match3 has $m H D=\Omega(N / \log N)$.

Part 2: Pair and triple finding

Negative conjecture for Match3: hazy intuition

$\operatorname{Match} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}: x_{i}+x_{j_{1}}+x_{j_{2}} \equiv_{M} 0\right\}$
Conjecture: Any D-depth H-headed transformer with embedding dimension m and $O(\log N)$-bit precision arithmetic approximating Match3 has $m H D=\Omega(N / \log N)$.

- Any transformer can be simulated with $O(m H D \log N)$ rounds of communication on a degree-3 CONGEST network with $O\left(N^{2}\right)$ nodes.
- Distribution over inputs with $M=N^{4}$:
(1) With probability $1 / 2$, draw $x_{i} \sim[M]$ iid. (WHP Match3 $(\mathrm{X})=\overrightarrow{0}$.)

(2) With probability $1 / 2, x_{i} \equiv_{M}-x_{j_{1}}-x_{j_{2}}$ for $i, j_{1}, j_{2} \sim[N] .(\operatorname{Match} 3(X) \neq \overrightarrow{0}$.
- Indistinguishable unless some node "knows" all of $x_{i}, x_{j_{1}}, x_{j_{2}}(?)$, WP $\approx 1 / N^{3}$
- With $O\left(N^{2}\right)$ total nodes, need $\approx N$ rounds for distinction to occur.

Part 2: Pair and triple finding

Negative conjecture for Match3: a comparable proof

For adjacency matrix $X \in\{0,1\}^{N \times N}, \operatorname{Cycle} 3(X)_{i}=1\left\{\exists j_{1}, j_{2}:\left(i, j_{1}, j_{1}\right)\right.$ is a cycle $\}$.
Theorem: Any D-depth H-headed transformer with embedding dimension m and $O(\log N)$-bit precision arithmetic approximating Cycle3 has $m H D=\widetilde{\Omega}(N)$.

- Any transformer can be simulated with $O(m H D \log N)$ rounds of communication on a degree-3 CONGEST network with $O\left(N^{2}\right)$ nodes.
- Once again, set-disjointness reduction.

Future work and open questions

- Can more advanced communication complexity and distributed computing techniques be used to resolve the conjecture?
- Can geometric approaches remove the dependence on bit-precision?
- How apt is the "sparse pairwise connectedness" framework for understanding language?
- Are there practical "intrinsically three-wise" learning tasks where modern transformers fail?

Thank you

References

[PMB19] Jorge Pérez, Javier Marinković, and Pablo Barceló. "On the Turing completeness of modern neural network architectures." 2019.
[YBR+20] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. "Are transformers universal approximators of sequence-to-sequence functions?" ICLR 2020.
[WCM22] Colin Wei, Yining Chen, and Tengyu Ma. "Statistically meaningful approximation: a case study on approximating turing machines with transformers." NeurIPS 2022.
[BAG20] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. "On the ability and limitations of transformers to recognize formal languages." EMNLP 2020.
[YPPN21] Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. "Self-attention networks can process bounded hierarchical languages." ACL 2021.
[LAG+22] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. "Transformers learn shortcuts to automata." 2022.
[HAF22] Yiding Hao, Dana Angluin, and Robert Frank. "Formal language recognition by hard attention transformers: Perspectives from circuit complexity."
2022.
[EGKZ22] Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, and Cyril Zhang. "Inductive biases and variable creation in self-attention mechanisms." ICML 2022.
[BPKP22] Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. "Simplicity bias in transformers and their ability to learn sparse boolean functions." 2022.
[ZFB23] Ruiqi Zhang, Spencer Frei, Peter Bartlett. "Trained Transformers Learn Linear Models In-Context." 2023.
[Lou19] Andreas Loukas. "What graph neural networks cannot learn: depth vs width." 2019.
[XHLG18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?" 2018.
[CBCB19] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. "On the equivalence between graph isomorphism testing and function approximation with GNNs." NeurIPS 2019.
[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI 2019.

Appendix / Extra slides

Part 1: Sparse averaging

An aside on communication complexity

- Suppose Alice has $a \in\{0,1\}^{n}$ and Bob has $b \in\{0,1\}^{n}$ and they want to compute $\operatorname{DISJ}(a, b)=\max _{i} a_{i} b_{i}$.
- Unlimited computation, bounded communication:
- Alice and Bob take turns sending single bits of information to one another.
-What is the minimum rounds of communication?
- $\leq n$ (Alice sends all bits to Bob)
- $\geq n$ (rank of characteristic matrix)

Part 1: Sparse averaging
 The negative result: proof

Theorem: Any self-attention unit f that approximates $q S A$ with $\log (N)$-bit precision arithmetic requires embedding dimension $m \geq q / \log N$.

- Create an $m \log N$-bit protocol for $\operatorname{DISJ}(a, b)$ with $n=q$, assuming the existence of f.

- Alice encodes her input in subset $y_{2 q+1}=\left\{2 i+a_{i}-1: i \in[q]\right\}$.
- Bob encodes his input as
$z_{2 i-1}=2 a_{i}-1, z_{2 i}=-1$. All other values set arbitrarily.
- Alice sends Bob her $m \log N$-bit query encoding $Q\left(x_{2 q+1}\right)$.
- Bob computes $f(X)$ and returns 1 iff $f(X)_{2 q+1} \neq-1$.

