COLUMBIA

U Transformers can learn pairwise—but not three-wise—functions >tatistical Machine

Learning Symposium

Clayton Sanford (Columbia Computer Science) 5023

Joint work with Daniel Hsu and Matus Telgarsky

Transformer architecture

Modeling decisions Hardness of approximating TrilD with multi-headed attention
A transformer is a sequence-processing neural network architecture, especially Model Context Depth (D) Heads (H) Embedding MLP
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t s > — Model MLPs as universal approximators together, but must share at least (V) to solve set disjointness.
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Hardness of approximating TrilDGraph with transformer
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Functions to approximate: : < O(N Y oy .
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» Element-wise multi-layer perceptron (MLP): For ¢ : R” — R™: Result  Target Architecture Bound Proof idea:
. _ | | » A CONGEST communication graph can simulate a multi-layer transformer
o(X) = (p(x1), ..., o(xn)). Positive  PairlD Self-attention unit, m = O(1) . . . .
MLP | % architecture. Alice and Bob are assigned respective nodes.
> Transformer: For multi-layer attention units Ly, ..., Lp, and MLPs ¢y, ..., ¢p: Nput & output » Similar reduction to set disjointness, but more careful embedding scheme.
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Why transformers? Negative TrilDGraph Full transformer with max(D, H, m) = N%(1) A three-wise tensor self-attention unit generalizes self-attention to model

skip-level connections three-wise interactions by having two key and value transforms and instead computing a
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» Easier to train than RNNs: simpler
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parallelization, avoids exploding gradients cLs) oL and multiplying by a value tensor XV; @ XV, €
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structure: self-attention encodes syntactic ngusge| | ianguage | Genera General Fitting PairlD with self-attention _ _ _ _ _ _ _

o y T o Bectrie\ [N\ Hlecti 5 For all € > 0, there exists a three-wise self-attention unit f with MLPs with embedding
and semantic linkages between words e ihe executiven || Nexecutive dimension m — O(1) such that
. . . :evi ngwe figures, figures / / p— U

» Universality: represents finite-state law jaw g N\ ‘t?

automata [Liu et al, '22], bounded-depth udoled RGN muddied e A\§ e . . . L : max max |f(X); — TrilD(X),;| < .

! S | the SO\ | - the easier N 225" For all € > 0, there exists a self-attention unit f with input and output MLPs with Xe[MN i
fight fight . - . . .
Dyck_languagés [Yao et al, '21], Turing ot | amel_\gime embedding dimension m = O(1) such that
machines [Wei et al, '21] ISEP SEP) sEPl——\sep] | Proof idea:
max max |f(p(X)); — PairlD(X);| < e. :
Figure: [Clark, et al "19] Xe[MN i » Same as PairlD for self-attention, but instead compute

27T(Xi + X + XJz)

O . Proof idea: (QO(X)Q &) gO(X)Kl X ¢(X)K2)i,j1,j2 — COS ( W ) :
> Set . Q, K such that ¢(X)Q, = cleos(Z),sin(Z5)] anc

P(X)K; = [cos(22%), — sin(22%)]. This gives

» How to mathematically formalize these linkages in target functions? M Open questions and future work
(
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» Strengthen communication complexity lower bounds

media

transformers architectures from one another?
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tasks on which modern transformers fail? Figure: [Rogers, et al '20]



