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Transformer architecture
A transformer is a sequence-processing neural network architecture, especially
prominent in modern NLP models.
▶ Self-attention unit: For input X ∈ RN×d and parameters matrices

Q, K , V ∈ Rd×m,
f (X ) = softmax(XQK TX T)XV .

Figure: “Attention? Attention!” Lil’Log

▶ Multi-headed attention (with skip-level connection): For self-attention units
f1, . . . , fH:

L(X ) = X +
H∑

h=1
fh(X ).

▶ Element-wise multi-layer perceptron (MLP): For φ : Rm → Rm:
φ(X ) := (φ(x1), . . . , φ(xN)).

▶ Transformer: For multi-layer attention units L1, . . . , LD, and MLPs φ0, . . . , φD:
T (X ) := (φD ◦ LD ◦ · · · ◦ L1 ◦ φ0)(X ).

Why transformers?

▶ Easier to train than RNNs: simpler
parallelization, avoids exploding gradients

▶ Attuned to pairwise linguistic
structure: self-attention encodes syntactic
and semantic linkages between words

▶ Universality: represents finite-state
automata [Liu et al, ’22], bounded-depth
Dyck languages [Yao et al, ’21], Turing
machines [Wei et al, ’21]

Figure: [Clark, et al ’19]

Our questions

▶ How to mathematically formalize these linkages in target functions?
▶ How to conceptualize transformer as circuits in theoretical CS language?
▶ Do those linkages translate to an approximation problem that separates certain

transformers architectures from one another?

Modeling decisions

Model Context
length (N)

Depth (D) Heads (H) Embedding
dimension
(m)

MLP
parameters
(k)

GPT-3 2048 96 96 128 12288
GPT-4 32k ? ? ? ?

▶ Observation: Context length N scales dramatically and N ≫ D, H , m
▶ =⇒ Sequence model size should be independent of (or at least grow very slowly with) N .
▶ =⇒ Model restricted pairwise computation between elements, governed by low-rank matrices

QX , KX , VX ∈ Rd×m.
▶ Observation: MLP parameter count much larger than self-attention parameters count:

k ≫ D, H , m
▶ =⇒ Model MLPs as universal approximators
▶ =⇒ Unlimited element-wise computational power

Modeling decisions

Functions to approximate:
▶ PairID : X ∈ [M ]N 7→ (1{∃j : xi + xj = 0 (mod M)})i∈[N ]
▶ TriID : X ∈ [M ]N 7→ (1{∃j1, j2 : xi + xj1 + xj2 = 0 (mod M)})i∈[N ]
▶ TriIDGraph : X ∈ {0, 1}N×N 7→ (1{∃j1, j2 : xi ,j1xj1,j2xj2,i = 1})i∈[N ]

Result Target Architecture Bound
Positive PairID Self-attention unit,

MLP input & output
m = O(1)

Negative TriID Multi-headed
attention, MLP input

& output

max(H , m) = NΩ(1)

Negative TriIDGraph Full transformer with
skip-level connections

max(D, H , m) = NΩ(1)

Positive TriID “Three-wise tensor
self-attention” unit

m = O(1)

Fitting PairID with self-attention

Theorem

For all ε > 0, there exists a self-attention unit f with input and output MLPs with
embedding dimension m = O(1) such that

max
X∈[M ]N

max
i

|f (φ(X ))i − PairID(X )i | ≤ ε.

Proof idea:
▶ Set φ, Q, K such that φ(X )Qi = c[cos(2πxi

M ), sin(2πxi
M )] and

φ(X )Ki = [cos(2πxi
M ), − sin(2πxi

M )]. This gives

(φ(X )QK Tφ(X )T)i ,j = cos
(

2π(xi + xj)
M

)= c xi + xj = 0 (mod M)
≤ c(1 − Ω( 1

M2)) otherwise.
▶ By choosing sufficiently large c :

softmax(φ(X )QK Tφ(X )T)i ,j ≈

1 xi + xj = 0 (mod M)
0 otherwise.

Hardness of approximating TriID with multi-headed attention

Theorem

No multi-headed layer with input and output MLPs L with Hm ≤ O(N) exists that
satisfies

max
X∈[M ]N

max
i

|L(X )i − TriID(X )i | <
1
2.

Proof idea:
▶ Embed instance of set disjointness communication protocol into multi-headed

attention. Alice’s inputs encoded as X1, . . . , XN/2 and Bob’s as the rest.
▶ Alice and Bob share at most O(Hm) bits by simulating the multi-headed attention

together, but must share at least Ω(N) to solve set disjointness.

Hardness of approximating TriIDGraph with transformer

Theorem

No transformer model T with DHm ≤ O( N
log N) exists that satisfies

max
X∈{0,1}N×N

max
i

|T (X )i − TriIDGraph(X )i | <
1
2.

Proof idea:
▶ A Congest communication graph can simulate a multi-layer transformer

architecture. Alice and Bob are assigned respective nodes.
▶ Similar reduction to set disjointness, but more careful embedding scheme.

Fitting TriID with three-wise tensor self-attention unit

A three-wise tensor self-attention unit generalizes self-attention to model
three-wise interactions by having two key and value transforms and instead computing a
tensor product

softmax(XQ ⊗ XK1 ⊗ XK2) ∈ RN×N×N,

and multiplying by a value tensor XV1 ⊗ XV2 ∈ RN×N×m.
Theorem

For all ε > 0, there exists a three-wise self-attention unit f with MLPs with embedding
dimension m = O(1) such that

max
X∈[M ]N

max
i

|f (X )i − TriID(X )i | ≤ ε.

Proof idea:
▶ Same as PairID for self-attention, but instead compute

(φ(X )Q ⊗ φ(X )K1 ⊗ φ(X )K2)i ,j1,j2 = cos
(

2π(xi + xj1 + xj2)
M

)
.

Open questions and future work

▶ Strengthen communication complexity lower bounds
and extend communication lens to other aspects of
transformer learning

▶ How apt is the “sparse pairwise connectedness”
framework for understanding language?

▶ Are there practical “intrinsically three-wise” learning
tasks on which modern transformers fail? Figure: [Rogers, et al ’20]


