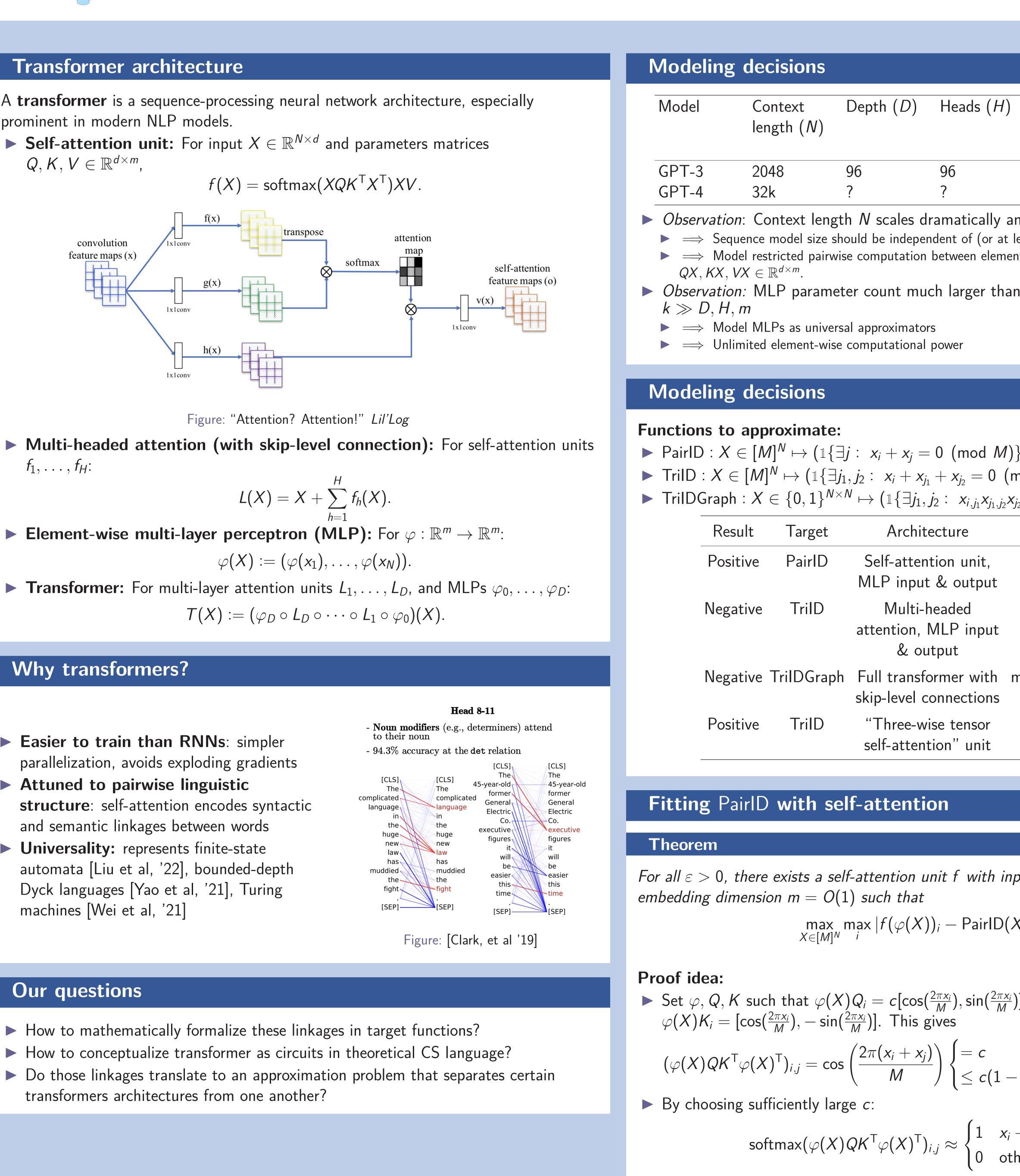


Transformer architecture

A **transformer** is a sequence-processing neural network architecture, especially prominent in modern NLP models.

- **Self-attention unit:** For input $X \in \mathbb{R}^{N \times d}$ and parameters matrices $Q, K, V \in \mathbb{R}^{d imes m}$,



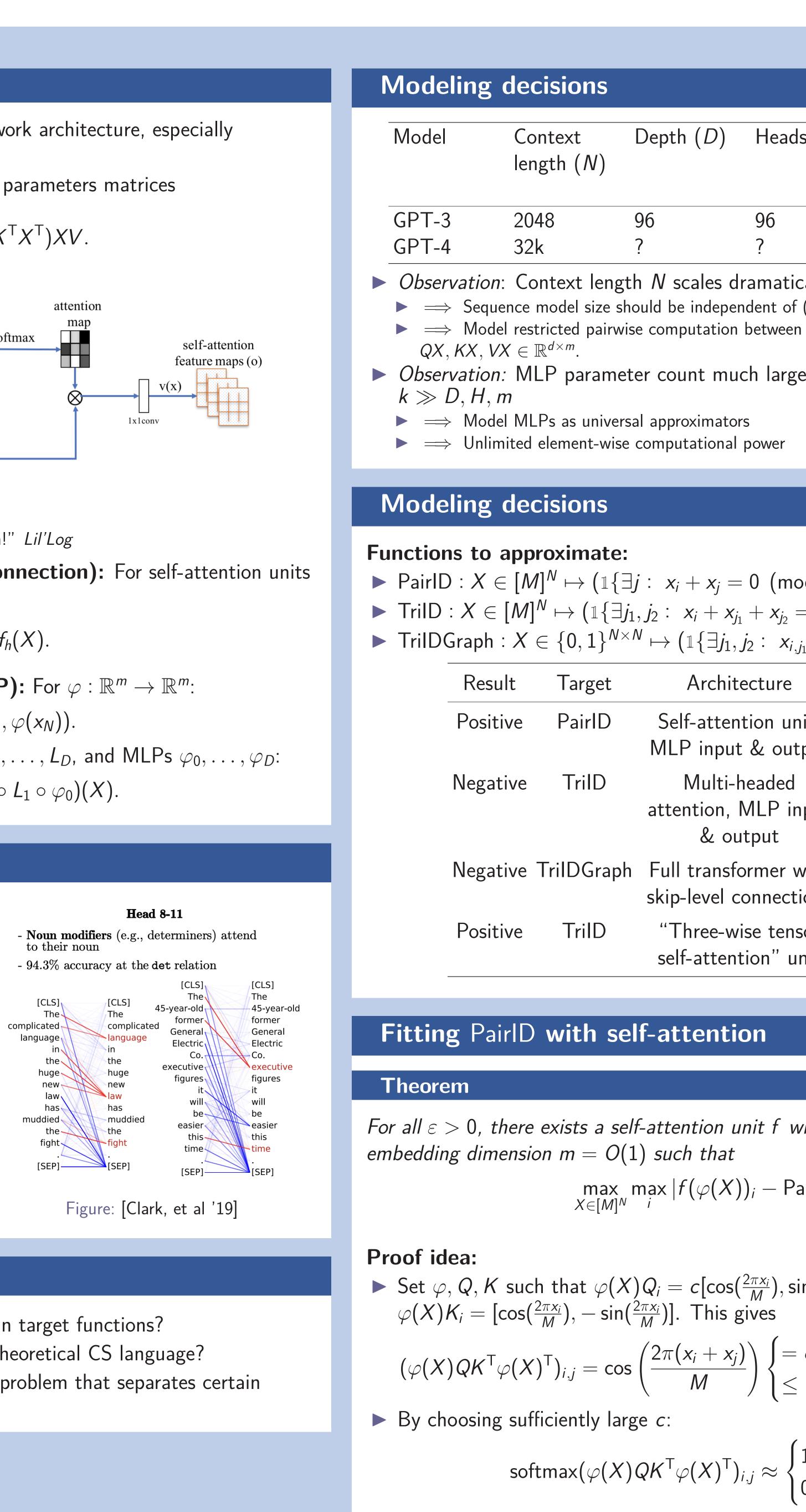
 f_1, \ldots, f_H :

$$L(X) = X + \sum_{h=1}^{H} f_h(X).$$

- **Element-wise multi-layer perceptron (MLP):** For $\varphi : \mathbb{R}^m \to \mathbb{R}^m$:

Why transformers?

- **Easier to train than RNNs**: simpler parallelization, avoids exploding gradients
- Attuned to pairwise linguistic **structure**: self-attention encodes syntactic and semantic linkages between words
- Universality: represents finite-state automata [Liu et al, '22], bounded-depth Dyck languages [Yao et al, '21], Turing machines [Wei et al, '21]



Our questions

- How to mathematically formalize these linkages in target functions?
- ► How to conceptualize transformer as circuits in theoretical CS language?
- transformers architectures from one another?

Transformers can learn pairwise—but not three-wise—functions

Clayton Sanford (Columbia Computer Science)

Joint work with Daniel Hsu and Matus Telgarsky

	Hardness of approximating
d) Embedding MLP dimension parameters (m) $(k)128 12288? ?and N \gg D, H, mat least grow very slowly with) N.ments, governed by low-rank matricesman self-attention parameters count:$	 Theorem No multi-headed layer with input and satisfies max max M
	Hardness of approximating
	Theorem
	No transformer model T with DHm <
$egin{aligned} &M \end{pmatrix} ig)_{i \in [N]} \ &({ m mod} \ \ M) ig)_{i \in [N]} \ &i_2 x_{j_2,i} = 1 ig)_{i \in [N]} \end{aligned}$	$\max_{X \in \{0,1\}^{N \times N}} \max_{i} 7$
Bound	Proof idea:
m = O(1)	A CONGEST communication grap architecture. Alice and Bob are as
$\max(H,m) = N^{\Omega}(1)$	Similar reduction to set disjointnes
$\max(n, m) = n (1)$	Fitting TrilD with three-wi
$max(D,H,m)=N^\Omega(1)$	A three-wise tensor self-attention three-wise interactions by having two tensor product
m = O(1)	softmax(XQ
	and multiplying by a value tensor XV_1
	Theorem
	For all $arepsilon > 0$, there exists a three-wise dimension $m = O(1)$ such that
input and output MLPs with	$\max_{X \in [M]^N} \max_i$
$ X(X)_i \leq \varepsilon.$	Proof idea:Same as PairID for self-attention,
$\left[\frac{X_i}{A}\right]$ and	$(arphi(X)Q\otimesarphi(X)K_1\otimesarphi)$
	Open questions and future
$x_i + x_j = 0 \pmod{M}$ $-\Omega(\frac{1}{M^2})$ otherwise. $x_i + x_j = 0 \pmod{M}$ otherwise.	 Strengthen communication complex and extend communication lens to transformer learning How apt is the "sparse pairwise con framework for understanding langua Are there practical "intrinsically thr
	-

Are there practical "intrinsically three-wise" learning tasks on which modern transformers fail?

g TrilD with multi-headed attention

d output MLPs L with $Hm \leq O(N)$ exists that $|L(X)_i - \mathsf{TrilD}(X)_i| < \frac{1}{2}.$

ss communication protocol into multi-headed as $X_1, \ldots, X_{N/2}$ and Bob's as the rest. *Hm*) bits by simulating the multi-headed attention $\Omega(N)$ to solve set disjointness.

ng TrilDGraph with transformer

 $\leq O(\frac{N}{\log N})$ exists that satisfies $|T(X)_i - \operatorname{TrilDGraph}(X)_i| < \frac{1}{2}.$

aph can simulate a multi-layer transformer assigned respective nodes. ess, but more careful embedding scheme.

vise tensor self-attention unit

on unit generalizes self-attention to model key and value transforms and instead computing a

 $\otimes XK_1 \otimes XK_2) \in \mathbb{R}^{N \times N \times N},$ $V_1 \otimes XV_2 \in \mathbb{R}^{N \times N \times m}.$

ise self-attention unit f with MLPs with embedding

 $|f(X)_i - \operatorname{TrilD}(X)_i| \leq \varepsilon.$

but instead compute $\Im \varphi(X)K_2)_{i,j_1,j_2} = \cos\left(rac{2\pi(x_i+x_{j_1}+x_{j_2})}{M}
ight).$

re work

exity lower bounds o other aspects of

onnectedness" juage?

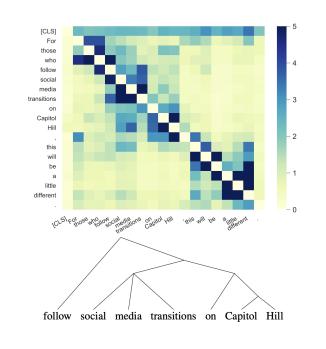


Figure: [Rogers, et al '20]