Transformers
and graph

Graph G

Input X

Transformer f

Embedding

v

Self-Attention

Vertex tokens

v

MLP

Y

algorithms "o

C I ayto n Sa nfo rd Task: Are vy and v4 connected?

July 12, 2024 Tk tokens

\

e

Collaboration with Bahare Fatemi, Ethan Hall, Anton Tsitsulin,
Mehran Kazemi, Jonathan Halcrow, Bryan Perozzi, Vahab Mirrokni

1,02

v

V2,73

Self- Attention

.

MLP

U3, V4
Ug, U7

v

Self-Attention

Edgc tokens

V6, UR

M7, VR

SERCERCERCERGEROERVEROE ROE RO RS ROY RN

U244

Target [(X)
%]

Yes

Google Research

Motivating questions

* Algorithmic powers and limitations of transformer models?

* Transformers as general-purpose neural networks (in
comparison to LSTMs, CNNs, GNNSs)?

= Focus on graph algorithmic tasks (e.g. edge existence,
connectivity, shortest path) and GNN comparisons.

Contributions

Studied graph algorithmic tasks as
sequential inputs to “vanilla” transformers.

Ioput X Transformer f Targe; [(X)
Theory: representational hierarchy of S G :
tasks, contrasts with GNNs. iy N
\‘_ o @;) > :07 .Mi,P | -
Empirical: exploratory analysis of Q—® e -
learnability of graph tasks: e @m g R ;
* Models: transformers vs GNNSs. Tk s

* Training regimes: trained from scratch,
fine-tuning, prompting.

Takeaways

1. GNNs > transformers on “local”

tasks, like edge existence. ey her
39 GraphG g Emb"f“i‘f 2
2. Transformers > GNNs on “global Shmion] | [2
and parallelizable tasks, like ;,j/ : o] B sl I
connectivity:. @89 | . i
3. Small transformers (~20M I i 2

parameters) trained from scratch
outperform prompting of LLMs
(~10B parameter) on small graphs.

Transformer model

Output T(X) € RY¥¥4

Transformer I

Input X € RV*4

Transformer model

Attention head:

X) = softmax(XOK! XHXV. »
T

Attention
head f

T

Input X € RV*4

Transformer model

Attention head:

A(X) = softmax(XOK' XHXV. XV
Parameters: O, K,V € | dxm. f(X) = softmax

RNXm

XV

- RNXm

softmax(XOQK' X1)
RN XN

Transformer model

Attention head:

X) = softmax(XOK! XHXV. »
T

Attention
head f

T

Input X € RV*4

Transformer model

Attention head:

X) = softmax(XOK' XHXV. o
Multi-headed I?ttention: T T T
g(X) = X + Z fh(X) Attention | Attention § Attention

h=1

head f, head f, head f;

! ! !

Input X € RV*4

Transformer model

Attention head: -
Ry (o
Multi-headed I?ttention: 1
g(X) =X+ th(X) Multi-headed attention g
h=1

Element-wise multi-layer perceptron (MLP): T

AR mexem
Input X € RV*4

10

Transformer model

Attention head:
A(X) = softmax(XOK' XHXV.
Parameters: O, K,V € R

Output T(X) € RY¥¥4

Multi-headed attention:

H
8(X) =X+) fiX).
h=1

Multi-headed attention g,

Multi-headed attention g,
Element-wise multi-layer perceptron (MLP):

¢(X) — (¢(x1)9 cee ¢(XN))

Full transformer:
I(X) = (o8- ° 8 ° PpX).

Input X € RV*4

11

Transformer model

Attention head:
f(X) = softmax(XOQK'XHXV.
Parameters: O, K,V € R

Multi-headed attention:

H
gX) =X+) [X.
h=1

Output 7(X) € RN*4

Multi-headed attention g,

Multi-headed attention g,
Element-wise multi-layer perceptron (MLP):

¢(X) — (¢(x1)9 ERE ¢(XN))

Full transformer:
I(X) = (¢ro81° - ° 81 ° Pp)X).

Key assumptions:
m, H, L < N; arbitrary MLPs ¢ .

Input X € RV*4

12

Transformer for graph-based tasks
'Min, et al '22]

1. Auxiliary GNNs: separate transformers and
GNNs included in the same model.

Input X Target [(X)

Transformer f

2. Graph positional encoding: embed graph i P =1 5
Laplacians or other info in tokenized positional - T :
encoding. T @ g s :

1 @ > vl’l)’svz —> Self—Altention —> g

3. Adjacency-based attention: soft or hard ® e e i
masking of non-adjacent nodes in positional =~ ke semeomeaer g o -
encoding. Tk tkens

4. “Pure transformers”: vanilla transformer
models with vertices and edges naively
encoded as inputs.

Prior work on transformer capabilities

Inefficient simulation of “serial” algorithms: Turing machines can be
simulated by transformers with large depth [Yun, et al ’19] or many chain-of-

thought tokens [Merrill-Sabharwal ’23].

Limitations of constant-depth transformers: Constant-depth transformers
can be simulated by TCPO circuits [MS23].

Transformers as communication models: Representational equivalence
between transformers and Massively Parallel Computation (MPC) distributed

computing model [S-Hsu-Telgarsky 23 & ’24].

Transformers and graph connectivity

Inefficient simulation of “serial’

algorithms: .
poly(/N)-depth or poly(N)-CoT = o
transformer. frm - it e
Limitations of constant-depth . @; . - j
transformers: 5 i L

X O(1)-depth poly(V)-width transformers. ™™= £

Transformers as communication models:

log(N)-depth NV-1-width transformers
(optimal depth).

Target [(X)

s e|ala v|r|e v |r|s(v|a|s|E

Message-Passing Graph Neural Networks
(MPNNs) [Gilmer et al ’17]

INITIALIZE READOUT

MESSAGE PASSING PHASE

* QOriginal motivation: chemistry.

MESSAGE PASS

* |nput graphs restrict sharing of
information between adjacent
nodes.

g =R (h* h)

 Nodes pass embeddings as
“messages’” to neighbors and
aggregate received messages.

Limitations of GNNs

Weisfeiler-Lehman (WL)
iIsomorphism test:

Featureless GNNs can distinguish
non-isomorphic graphs only if
distinguishable by WL-test

[Xu et al ’18].

CONGEST: Each GNN layer can be
simulated by 1 round of CONGEST

distributed computing
[Loukas ’19].

GNNs and graph connectivity

Weisfeiler-Lehman (WL)
iIsomorphism test: hesh(0,10,00) | busk (o, 1o, 8
X featureless GNNs can distinguish V d

between connected and - . '
disconnected graphs.

CONGEST:
X GNNs solving connectivity with

depth L and width m satisfying A /\

Motivation

Transformers have more parameter-
efficient solutions to connectivity than

Input X Transformer f Target [(X)
GNNs (L = O(log N), m = N°€ vs [it -
L /m — Q (\ﬁv)) . v 74 f;i V4 Sclf-Aitcntion i
\‘_ m @9 > = ~Mi‘P | -
Question 1: Does this apply to other @5@ I o v
basic graph algorithms tasks®? ke Aot v comeced? 5 st o 2
Question 2: Do transformers outperform e

GNNs on learnability, not just
expressivity?

Theoretical results

Partition of graph algorithmic tasks
into transformer parameter-complexity
equivalence classes.

* Retrieval tasks: node count, edge

count, node degree, node existence.

* Parallelizable tasks: connectivity,
cycle check, minimum spanning
forest, # connected components,
bipartiteness, planarity.

 Search tasks: shortest path,
diameter, reachabillity.

Transformer parameter size regimes:

* Depth 1 (D1): depth L = 1, width
m = O(N°).

» Log-depth (LD): L = O(log N),
m = O(N°).

 Log-depth with blank “pause” tokens
(LDP):
L = O(ogN), m = O(N°), blank tokens
N' = N,

 Log-depth/large width (LDW):
L = O(logN), m = O(N">%¢).

Theoretical results

Partition of graph algorithmic tasks

into transformer parameter-complexity

equivalence classes.

Retrieval tasks: node count, edge

count, node degree, node existence.

Parallelizable tasks: connectivity,
cycle check, minimum spanning
forest, # connected components,
bipartiteness, planarity.

Search tasks: shortest path,
diameter, reachabillity.

Task class Example tasks Complexity
Retrieval (§3.3) Node count D1
L=1 Edge count D1
m = O(log N) Edge existence D1
Node degree D1

Parallelizable (§3.1) Connectivity D
L = O(log N) Cycle check LDPN LDW
m = O(N°) Bipartiteness LDPN LDW
Search (§3.2) Shortest path LDW
L = O(log N) Diameter LDW
m = O(N L/ ‘)

e D

Parallelizable

4 p

LDP D LDW
Search
. p
Retrieval
\S =

Depth-1 theoretical results

Positive results: There exist D1 transformers

(L = 1, m = O(N®)) that solve all retrieval tasks
(hode count, edge count, node degree, edge
existence).

» Construction depends on sinusoidal embedding
of each vertex.

Depth-1 theoretical results

Negative results: No D1 transformer can solve graph
connectivity (or cycle check or shortest path).

 Note: Already known for constant-depth
transformers because these tasks cannot be
computed by TCO circuits [MS’23].

 Consequence of Alice/Bob communication
complexity reduction

[S-Hsu-Telgarsky '23].

» Solution to connectivity implies O(m)-bit
communication protocol for solving disjointness:
max a;b:..

i

b1

o O—0

O o O

02020

O O O
O—0O O

e

Log-depth theoretical results

Parallelizable tasks: connectivity, cycle check,
minimum spanning forest, # connected components,
bipartiteness, planarity.

Parallelizable LDW construction: Transformers of depth

L = O(log N) and width m = O(N">%€) can solve any
parallelizable task.

Parallelizable LDP construction: Transformers of depth
L = O(log N) and width m = O(N¢) with N’ = N9
blank input tokens can solve any parallelizable task.

Parallelizable log-depth optimality result: All transformers
of width m = O(N'~¢) and N’ = N°W plank tokens that
solve any parallelizable task have depth L = Q(log N).

Task class Example tasks Complexity
Retrieval (§3.3) Node count D1
[=1 Edge count D1
m = O(log N) Edge existence D1
Node degree D1
Parallelizable (§3.1) Connectivity D
L = O(log N) Cycle check LDPN LDW
m = O(N°) Bipartiteness LDPN LDW
Search (§3.2) Shortest path LDW
L = O(log N) Diameter LDW
)(N-
s 7 S p
Parallelizable
s N
LDP D LDW
Search
4 N
Retrieval

Search tasks: shortest path, diameter, reachabillity.

Search LDW construction: Transformers of depth

L = O(log N) and width m = O(N">7€) can solve
any search task.

Search depth equivalence: If one search task can
be solved by transformers of depth L, width

m = N°D and N’ = N°W pause tokens, then all
search tasks can be solved with depth L + O(1),
width O(m) and O(N') + N° phase tokens.

Log-depth theoretical results

Task class Example tasks Complexity
Retrieval (§3.3) Node count D1
L =1 Edge count D1
m = O(log N) Edge existence D1
Node degree D1
Parallelizable (§3.1) Connectivity D
L = O(log N) Cycle check LDPN LDW
m = O(N°) Bipartiteness LDPN LDW
Search (§3.2) Shortest path LDW
L = O(log N) Diameter LDW
m = O(N"'/*"°)
s 7 N p
Parallelizable
~ N
LDP D LDW
Search
4 N

Retrieval

Log-depth proof ideas

Component 1: Bidirectional
relationship between transformers and
MPC distributed computing model
[S-Hsu-Telgarsky '24].

Component 2: Equivalence classes of
graph algorithmic tasks in MPC model
[INanongkai-Scquizzato '22].

Task class Example tasks Complexity
Retrieval (§3.3) Node count D1
L=1 Edge count D1
m = O(log N) Edge existence D1
Node degree D1
Parallelizable (§3.1) Connectivity D
L = O(log N) Cycle check LDPN LDW
m = O(N°) Bipartiteness LDPN LDW
Search (§3.2) Shortest path LDW
L = O(log N) Diameter LDW
m = O(N/*7¢)
(4 N ™~
Parallelizable
4 D
LDP D LDW
Search
r N
Retrieval

Massively Parallel Computation (MPC)

Computational model of
MapReduce [Karloff et al, *10]

* Input divided among g = O(N‘S)
machines with local memory s
(gs = O(N'*7)).

e Roundr=1,...,R:

« Each machine performs
computations on local memory.

e Each machine sends and

receives < s bits of information.

-
-

machine \ = communication

= synchronization

Component 2: MPC graph equivalence classes

Problems hard under the L Z MPC(o(log N)) conjecture

Problems hard under the NL Z MPC{o(log V)) conjecture‘

Circuil, Evaluation

Perfect Matching Network Flow

[Problems equivalent under O(1) MPC rounds]

Betweenness Centrality

Low memory equivalence:

It a parallelizable task can be solved by an b oMb ApSP
MPC protocol with s = O(N®) local memory, | | | |
0 (1) . Radius Diameter Directed CYC]Q Detection
Rrounds,andg = N machines, then all
Strong Connectivity Shortest Path

parallelizable tasks can be solved with O(s) :
SearCh taSkS st-reachahility

local memory, R + O(1) rounds, g + NV ‘ ~— _
machines.

Densest Subgraph Single-Linkage Clustering

¢ POSItIVG theOrem COnneCtIVIty can be [Problcms cquivalent under O(1) MPC rounds]
SOlved W|th § = O(NG), R — 0(10g N), Formula Evaluation

gs = O(N'19).

° Negatlve COnJeCture COnneCtIVIty reqUIreS Cycle Detection One Cycle vs. Two Cycles List Ranking
R = QUogN)if s = O(N'~¢), gs = N,

Qut-degree | st-reachability Order Between Vertices
Planarity Testing Minimum Cut Graph Bipartiteness

Minimum Spanning Forest. Connected Components

st-connectivity # Connected Components

Parallelizable tasks Graph Connectivity

———

Component 2: MPC graph equivalence classes

Problems hard under the L € MPC(o(log N')) conjecture

Problems hard under the NL Z MPC{o(log N)) conjecture‘

Circuil. Evaluatic
Perfect Matching ircuil. Evaluation Network Flow

[Problems equivalent under O(1) MPC rounds]

Low memory equivalence:
If a search task can be solved by an

MPC protocol with s = O(N®) local memory,
R rounds, and g = N machines, then all

search tasks can be solved with O(s)

st-reachahility
local memory, R + O(1) rounds, g + NOD Se‘arch tasks
machines.

Betweenness Centralily
SSSP Median APSP
Radius Diameter Directed Cycle Detection

Strong Connectivity Shortest Path

Densest Subgraph Single-Linkage Clustering

[Problcms cquivalent under O(1) MPC rounds]

Formula Evaluation

Qut-degree 1 st-reachability Order Between Vertices
Planarity Testing Minimum Cut Graph Bipartiteness
Minimum Spanning Forest. Connected Components

Cycle Detection One Cycle vs. Two Cycles List Ranking

st-connectivity # Connected Components

Parallelizable tasks Graph Connectivity

| I

Component 2: MPC graph equivalence classes

Problems hard under the L Z MPC(o(log N)) conjecture

Problems hard under the NL Z MPC{o(log N)) conjecture‘

Circuil, Evaluation

Perfect Matching Network Flow

[Problems equivalent under O(1) MPC rounds]

Betweenness Centrality

High memory capability:
All NC1 circuits can be simulated with

s = O(N">7¢) local memory,
g = O(N) machines, L = O(log N)

SSSP Median APSP
Radius Diameter Directed Cycle Detection

Strong Connectivity Shortest Path

rounds.

» All parallelizable and search tasks

belong to L and NL.

« L C NLC NC.

Search tasks

st-reachahility

\ T

Densest Subgraph Single-Linkage Clustering

[Problcms cquivalent under O(1) MPC rounds]

Formula Evaluation

Qut-degree 1 st-reachability Order Between Vertices

Planarity Testing Minimum Cut Graph Bipartiteness
Minimum Spanning Forest. Connected Components
Cycle Detection One Cycle vs. Two Cycles List Ranking

st-connectivity # Connected Components

Parallelizable tasks Graph Connectivity
‘ ——

Component 1: Transformer/MPC relationship

Transformers simulate MPC [SHT24]: — T
R-round MPC protocols with local LTl ’
memory s, # machines g can be =
simulated by transformers of depth —
L =R+ 1, width m = O(s*log q). ‘

MPC simulates transformers [SHT24]:

Transformers with depth L, width m can
be simulated by MPC protocols with

R = O(L) rounds, local memory
s = O(m), # machines g = O(N?).

e

Component 1: Transformer/MPC relationship

Transformers simulate MPC [Improved!]: — T
R-round MPC protocols with local T o
memory s, # machines g can be ro 1
simulated by transformers of depth —
L = O(R), width m = O(s' ™log g). ‘

MPC simulates transformers [SHT24]:

Transformers with depth L, width m can
be simulated by MPC protocols with

R = O(L) rounds, local memory
s = O(m), # machines g = O(N?).

Component 1: Transformer/MPC relationship

Transformers simulate MPC [Improved!]:
R-round MPC protocols with local

memory §, # machines g can be
simulated by transformers of depth

L = O(R), width m = O(s ' log).

MPC simulates transformers [SHT24]:

Transformers with depth L, width m can
be simulated by MPC protocols with

R = O(L) rounds, local memory
s = O(m), # machines g = O(N?).

Step 0
1 Nbhd

q machines per Nbhd

Step 1
¢ Nbhds

7 /& machmes per Nbhd

Nbhd?

(Machine 1
| Dutbox|

 Machine 2
| Outbox;

(Nbhd!

Machine 1
Outbox; —

Nbhd,

Machine g
Outbox)

[Machine (ﬂ/

Step 2
£2) ;

(Nbhd?

1
Outboxq J

q Wehds

([Nbhd]

Machine ¢
Outbox,
[J

Log-depth proof ideas

Component 1: Bidirectional
relationship between transformers and
MPC distributed computing model
[S-Hsu-Telgarsky '24].

Component 2: Equivalence classes of
graph algorithmic tasks in MPC model
[INanongkai-Scquizzato '22].

Task class Example tasks Complexity
Retrieval (§3.3) Node count D1
L=1 Edge count D1
m = O(log N) Edge existence D1
Node degree D1
Parallelizable (§3.1) Connectivity D
L = O(log N) Cycle check LDPN LDW
m = O(N°) Bipartiteness LDPN LDW
Search (§3.2) Shortest path LDW
L = O(log N) Diameter LDW
m = O(N/*7¢)
(4 N ™~
Parallelizable
4 D
LDP D LDW
Search
r N
Retrieval

Parallelizable LDW construction: Transformers of depth

L = O(log N) and width m = O(N">7¢) can solve any
parallelizable task.

Parallelizable LDP construction: Transformers of depth
L = O(log N) and width m = O(N¢) with N’ = N°W plank input
tokens can solve any parallelizable task.

Parallelizable log-depth optimality result: All transformers of width
m = O(N'~¢) and N’ = N°U plank tokens that solve any

parallelizable task have depth L = Q(log N).

Search LDW construction: Transformers of depth L = O(log N)
and width m = O(N"~*€) can solve any search task.

Search depth equivalence: If one search task can be solved by
transformers of depth L, widthm = N O) and N’ = N9 pause
tokens, then all search tasks can be solved with depth L + O(1),
width O(m) and O(N’) + N°V phase tokens.

Log-depth theoretical results

Task class Example tasks Complexity
Retrieval (§3.3) Node count D1
[=1 Edge count D1
m = O(log N) Edge existence D1
Node degree D1
Parallelizable (§3.1) Connectivity D
L = O(log N) Cycle check LDPN LDW
m = O(N°) Bipartiteness LDPN LDW
Search (§3.2) Shortest path LDW
L = O(log N) Diameter LDW
) | A"'nw' |
s 7 S p
Parallelizable
s N
LDP D LDW
Search
N
Retrieval

m
Experiments ro mee

¢ />\ \ function: g G describes a graph among nodes 0, 1, 2, 3,4, 5, 6, 7, and 8.

e © In this graph:
—1 Node 0 is connected to nodes 2 and 3. - LLM: f Answer: A
Node 1 is connected to nodes 2 and 8.

GrathA dataset: Prompt

Graph task | question: @ | |Question: What is the degree of node 47

» Suite of algorithmic tasks on small
graph instances (5-20 nodes).

* Originally designed for “Talk Like a Graph” evaluation of LLM prompting strategies [Fatemi-
Halcrow-Perozzi '24].

Models/training regimes:

 60M-parameter vanilla transformer trained from scratch.
 11B-parameter pre-trained LLM fine-tuned on GraphQA.
 62B PaLM LLMs with different prompting strategies [FHP24].

» Various GNN models, including hybrid models used in GraphToken paper [Perozzi, et al *24].

 Sample complexities: 1k vs 100k graph instances.

Experiments

Takeaway #1: GNNs more effectively extract local structure from graphs

than transformers in a sample-efficient manner.

* While transformers can efficiently

solve these tasks, GNNs have Node Degree Cyce Check
nice inductive biases for “local” Model IK 100K 1K 100K
solutions. GCN [42] 0.8 04 832 832
MPNN [26] 99.4 99.8 99.0 100.0
GIN [82] 362 378 988 832
60M transformer 31.6 91.7 07.1 98.0

11B transformer (FT) 68.8

98.0

Experiments

Takeaway #2: While GNNs learn better heuristics with few samples for
paralellizable tasks, transformers make better use of more samples.

* Reflects gap in representational capabilities

of transformers and GNNs on these Connectivity Task

tasks. # of training samples

. . . Model 1K 100K

 GNN inductive biases help when there

, GCN [42] 50.2 55.0

aren’t enough samples actually solve MPNN [26] 668 2 6

the task. GIN [82] 54.0 58.6

60M transformer 57.4 97.1

11B transformer (FT) 92.8 —

Experiments

Takeaway #3: Dominance of randomly-initialized and fine-tuned
transformers over prompting-based strategies on LLMs.

Retrieval tasks Parallelizable Tasks Search Tasks Subgraph Counting

Method Node count Edge count Edge existence Node degree Connectivity Cycle check Shortest path Triangle counting
ZERO-SHOT [22] 21.7 12.4 44.5 14.0 84.9 76.0 11.5 1.5

& ZERO-COT [22] 14.6 9.4 33.5 104 73.5 32.3 33.6 12.7

g‘ FEW-SHOT [22] 25.3 12.0 36.8 174 79.4 37.4 22.7 3.0

& COT [22] 27.6 12.8 42.8 29.2 45.2 58.0 38.6 8.1
COT-BAG [22] 26.9 12.5 37.3 28.0 45.2 52.1 40.4 8.1

. 60M transformer-1K 100.0 100.0 67.6 31.5 92.9 97.1 57.4 33.4

2 60M transformer-100K 100.0 100.0 96.1 91.7 98.0 98.0 97.2 40.5
1 1B transformer (FT)-1K 100.0 45.0 100.0 68.8 08.4 98.0 92.8 26.0

> LLMs aren’t incidentally learning to solve these tasks on their datasets.

Experiments

Sample complexity experiments for each task with 60M transformers:

Training Samples

Training Samples

Training Samples

Node count Edge count Edge existence Node degree
1 1 1 1 e
A Ve
2 0.6} 4 0.6+ =
g 0.8 |- 10.6 - |
(& |
< 04 0.4 |
0.7 0.4 -
0.2 0.2
(’)_ A B A | Lol I “L et [| 1 o1en Ob I 1 11 11 11 02\ Ll Lol 1 1
10 10° 104 10° 102 10° 104 10° 102 10° 104 10° 102 103 104 10°
Connectivity Cycle check Shortest path Triangle counting
19— oo oo @ — 1 ?—C—ﬁH—v—O—Q—Q—T—.——O 1 H—Q—H—O-—QH 1 00990900
0.8 | N 0.8
= (.6 08 - i
: 0.6 - .
§ 0.4
0.1
0.2 N I 0'6
2
0 [| I O I B | I -O.g Lo d L1 Ll | 1..,...." N L1 | . l L1l rO' X Lo d L1 Ll Lo _
102 10° 104 10° 102 103 104 10° 102 10° 104 10° 102 103 104 10°

Training Samples

What’s next?

* Fine-grained exploration of task difficulty in larger graph instances and size
generalization.

* (Generalizations of theoretical results and connections to computational
complexity.

* Re-examining assumption of arbitrary MLPs.

H1

