
Collaboration with Bahare Fatemi, Ethan Hall, Anton Tsitsulin,
Mehran Kazemi, Jonathan Halcrow, Bryan Perozzi, Vahab Mirrokni

Transformers
and graph
algorithms
Clayton Sanford
July 12, 2024

Motivating questions

• Algorithmic powers and limitations of transformer models?

• Transformers as general-purpose neural networks (in
comparison to LSTMs, CNNs, GNNs)?

➡Focus on graph algorithmic tasks (e.g. edge existence,
connectivity, shortest path) and GNN comparisons.

Contributions
Studied graph algorithmic tasks as
sequential inputs to “vanilla” transformers.

Theory: representational hierarchy of
tasks, contrasts with GNNs.

Empirical: exploratory analysis of
learnability of graph tasks:

• Models: transformers vs GNNs.

• Training regimes: trained from scratch,
fine-tuning, prompting.

Takeaways

1. GNNs transformers on “local”
tasks, like edge existence.

2. Transformers GNNs on “global”
and parallelizable tasks, like
connectivity.

3. Small transformers (~20M
parameters) trained from scratch
outperform prompting of LLMs
(~10B parameter) on small graphs.

≫

≫

Transformer model

5

Input X ∈ ℝN×d

Transformer T

Output T(X) ∈ ℝN×d

Transformer model
Attention head: 

.  
Parameters: .
f(X) = softmax(XQKTXT)XV

Q, K, V ∈ ℝd×m

6

Input X ∈ ℝN×d

Attention
head f

Output f(X) ∈ ℝN×m

Transformer model
Attention head: 

.  
Parameters: .
f(X) = softmax(XQKTXT)XV

Q, K, V ∈ ℝd×m

7

 XQ

ℝN×m

 XV

ℝN×m

 KT XT ℝN×m()f(X) = softmax × ×

=
 XV

ℝN×m

softmax(XQKTXT)
ℝN×N

×

Transformer model
Attention head: 

.  
Parameters: .
f(X) = softmax(XQKTXT)XV

Q, K, V ∈ ℝd×m

8

Input X ∈ ℝN×d

Attention
head f

Output f(X) ∈ ℝN×m

Transformer model
Attention head: 

.  
Parameters: .

Multi-headed attention:  

.

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

9

Input X ∈ ℝN×d

Attention
head f1

Output g(X) ∈ ℝN×m

Attention
head f2

Attention
head f3

Transformer model
Attention head: 

.  
Parameters: .

Multi-headed attention:  

.

Element-wise multi-layer perceptron (MLP):
.

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

10

Input X ∈ ℝN×d

Multi-headed attention g

Output g(X) ∈ ℝN×m

Transformer model
Attention head: 

.  
Parameters: .

Multi-headed attention:  

.

Element-wise multi-layer perceptron (MLP):
.

Full transformer:
.

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)

11

Input X ∈ ℝN×d

Multi-headed attention g1

Output T(X) ∈ ℝN×d

Multi-layer perceptron ϕ0

Multi-layer perceptron ϕ1

Multi-headed attention g2

Multi-layer perceptron ϕ2

Transformer model
Attention head: 

.  
Parameters: .

Multi-headed attention:  

.

Element-wise multi-layer perceptron (MLP):
.

Full transformer:
.

Key assumptions:  
; arbitrary MLPs .

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)

m, H, L ≪ N ϕℓ
12

Input X ∈ ℝN×d

Multi-headed attention g1

Output T(X) ∈ ℝN×d

Multi-layer perceptron ϕ0

Multi-layer perceptron ϕ1

Multi-headed attention g2

Multi-layer perceptron ϕ2

Transformer for graph-based tasks
[Min, et al ’22]
1. Auxiliary GNNs: separate transformers and

GNNs included in the same model.

2. Graph positional encoding: embed graph
Laplacians or other info in tokenized positional
encoding.

3. Adjacency-based attention: soft or hard
masking of non-adjacent nodes in positional
encoding.

4. “Pure transformers”: vanilla transformer
models with vertices and edges naively
encoded as inputs.

Prior work on transformer capabilities

Inefficient simulation of “serial” algorithms: Turing machines can be
simulated by transformers with large depth [Yun, et al ’19] or many chain-of-
thought tokens [Merrill-Sabharwal ’23].

Limitations of constant-depth transformers: Constant-depth transformers
can be simulated by TC0 circuits [MS23].

Transformers as communication models: Representational equivalence
between transformers and Massively Parallel Computation (MPC) distributed
computing model [S-Hsu-Telgarsky ’23 & ’24].

Transformers and graph connectivity

Inefficient simulation of “serial”
algorithms:  
✅ -depth or -CoT
transformer.

Limitations of constant-depth
transformers:  
❌ -depth -width transformers.

Transformers as communication models:  
✅ -depth -width transformers
(optimal depth).

poly(N) poly(N)

O(1) poly(N)

log(N) N0.1

Message-Passing Graph Neural Networks
(MPNNs) [Gilmer et al ’17]
• Original motivation: chemistry.

• Input graphs restrict sharing of
information between adjacent
nodes.

• Nodes pass embeddings as
“messages” to neighbors and
aggregate received messages.

Limitations of GNNs

Weisfeiler-Lehman (WL)
isomorphism test:  
Featureless GNNs can distinguish
non-isomorphic graphs only if
distinguishable by WL-test  
[Xu et al ’18].

CONGEST: Each GNN layer can be
simulated by 1 round of CONGEST
distributed computing  
[Loukas ’19].

GNNs and graph connectivity

Weisfeiler-Lehman (WL)
isomorphism test: 
❌ featureless GNNs can distinguish
between connected and
disconnected graphs.

CONGEST:  
❌ GNNs solving connectivity with
depth and width satisfying

.

L m

L m = Õ(N)

Motivation

Transformers have more parameter-
efficient solutions to connectivity than
GNNs (, vs

).

Question 1: Does this apply to other
basic graph algorithms tasks?

Question 2: Do transformers outperform
GNNs on learnability, not just
expressivity?

L = O(log N) m = Nϵ

L m = Ω(N)

Theoretical results
Partition of graph algorithmic tasks
into transformer parameter-complexity
equivalence classes.

• Retrieval tasks: node count, edge
count, node degree, node existence.

• Parallelizable tasks: connectivity,
cycle check, minimum spanning
forest, # connected components,
bipartiteness, planarity.

• Search tasks: shortest path,
diameter, reachability.

Transformer parameter size regimes:

• Depth 1 (D1): depth , width
.

• Log-depth (LD): ,
.

• Log-depth with blank “pause” tokens
(LDP):  

, , blank tokens
.

• Log-depth/large width (LDW):
, .

L = 1
m = O(Nϵ)

L = O(log N)
m = O(Nϵ)

L = O(log N) m = O(Nϵ)
N′ = NO(1)

L = O(log N) m = O(N0.5+ϵ)

Theoretical results
Partition of graph algorithmic tasks
into transformer parameter-complexity
equivalence classes.

• Retrieval tasks: node count, edge
count, node degree, node existence.

• Parallelizable tasks: connectivity,
cycle check, minimum spanning
forest, # connected components,
bipartiteness, planarity.

• Search tasks: shortest path,
diameter, reachability.

Depth-1 theoretical results
Positive results: There exist D1 transformers
(,) that solve all retrieval tasks
(node count, edge count, node degree, edge
existence).

• Construction depends on sinusoidal embedding
of each vertex.

L = 1 m = O(Nϵ)

Depth-1 theoretical results
Negative results: No D1 transformer can solve graph
connectivity (or cycle check or shortest path).

• Note: Already known for constant-depth
transformers because these tasks cannot be
computed by TC0 circuits [MS’23].

• Consequence of Alice/Bob communication
complexity reduction  
[S-Hsu-Telgarsky ’23].

• Solution to connectivity implies -bit
communication protocol for solving disjointness:

.

O(m)

max
i

aibi

Log-depth theoretical results
Parallelizable tasks: connectivity, cycle check,
minimum spanning forest, # connected components,
bipartiteness, planarity.

Parallelizable LDW construction: Transformers of depth
 and width can solve any

parallelizable task.

Parallelizable LDP construction: Transformers of depth
 and width with

blank input tokens can solve any parallelizable task.

Parallelizable log-depth optimality result: All transformers
of width and blank tokens that
solve any parallelizable task have depth .

L = O(log N) m = O(N0.5+ϵ)

L = O(log N) m = O(Nϵ) N′ = NO(1)

m = O(N1−ϵ) N′ = NO(1)

L = Ω(log N)

Log-depth theoretical results
Search tasks: shortest path, diameter, reachability.

Search LDW construction: Transformers of depth
 and width can solve

any search task.

Search depth equivalence: If one search task can
be solved by transformers of depth , width

, and pause tokens, then all
search tasks can be solved with depth ,
width and phase tokens.

L = O(log N) m = O(N0.5+ϵ)

L
m = NO(1) N′ = NO(1)

L + O(1)
O(m) O(N′) + NO(1)

Log-depth proof ideas
Component 1: Bidirectional
relationship between transformers and
MPC distributed computing model 
[S-Hsu-Telgarsky ’24].

Component 2: Equivalence classes of
graph algorithmic tasks in MPC model
[Nanongkai-Scquizzato ’22].

Computational model of
MapReduce [Karloff et al, ’10]

• Input divided among
machines with local memory  
().

• Round :

• Each machine performs
computations on local memory.

• Each machine sends and
receives bits of information.

q = O(Nδ)
s

qs = O(N1+γ)
r = 1,…, R

≤ s

Massively Parallel Computation (MPC)

Component 2: MPC graph equivalence classes

Low memory equivalence:  
If a parallelizable task can be solved by an
MPC protocol with local memory,

 rounds, and machines, then all
parallelizable tasks can be solved with
local memory, rounds,
machines.

• Positive theorem: Connectivity can be
solved with , ,

.

• Negative conjecture: connectivity requires
 if , .

s = O(Nϵ)
R q = NO(1)

O(s)
R + O(1) q + NO(1)

s = O(Nϵ) R = O(log N)
qs = O(N1+ϵ)

R = Ω(log N) s = O(N1−ϵ) qs = NO(1)

Parallelizable tasks

Search tasks

Component 2: MPC graph equivalence classes

Low memory equivalence:  
If a search task can be solved by an  
MPC protocol with local memory,

 rounds, and machines, then all
search tasks can be solved with  
local memory, rounds,
machines.

• Positive theorem: Connectivity can be
solved with , ,

.

• Negative conjecture: connectivity requires
 if , .

s = O(Nϵ)
R q = NO(1)

O(s)
R + O(1) q + NO(1)

s = O(Nϵ) R = O(log N)
qs = O(N1+ϵ)

R = Ω(log N) s = O(N1−ϵ) qs = NO(1)

Parallelizable tasks

Search tasks

Component 2: MPC graph equivalence classes

High memory capability:  
All NC1 circuits can be simulated with

 local memory,
 machines,

rounds.

• All parallelizable and search tasks
belong to L and NL.

• L NL NC1.

s = O(N0.5+ϵ)
q = O(N) L = O(log N)

⊆ ⊆

Parallelizable tasks

Search tasks

Component 1: Transformer/MPC relationship

Transformers simulate MPC [SHT24]:  
-round MPC protocols with local

memory , # machines can be
simulated by transformers of depth

, width .

MPC simulates transformers [SHT24]:  
Transformers with depth , width can
be simulated by MPC protocols with

 rounds, local memory
, # machines .

R
s q

L = R + 1 m = Õ(s4log q)

L m

R = O(L)
s = O(m) q = O(N2)

Attention head
Attention head

Sparse propagation

Local

Softmax attention

Attention head

Local

Q(·)

K(·)>

V (·)

Multiple
hashing

(Qh,i,Kh,i, Vh,i)

Token machines

Key/value
propagation
machines

Query
propagation
machines

Q>
h,iKh,i0

Inner product machines

Component 1: Transformer/MPC relationship

Transformers simulate MPC [Improved!]:  
-round MPC protocols with local  

memory , # machines can be  
simulated by transformers of depth

, width .

MPC simulates transformers [SHT24]:  
Transformers with depth , width can  
be simulated by MPC protocols with

 rounds, local memory
, # machines .

R
s q

L = O(R) m = Õ(s1+ϵlog q)

L m

R = O(L)
s = O(m) q = O(N2)

Attention head
Attention head

Sparse propagation

Local

Softmax attention

Attention head

Local

Q(·)

K(·)>

V (·)

Multiple
hashing

(Qh,i,Kh,i, Vh,i)

Token machines

Key/value
propagation
machines

Query
propagation
machines

Q>
h,iKh,i0

Inner product machines

Component 1: Transformer/MPC relationship

Transformers simulate MPC [Improved!]:  
-round MPC protocols with local  

memory , # machines can be  
simulated by transformers of depth

, width .

MPC simulates transformers [SHT24]:  
Transformers with depth , width can  
be simulated by MPC protocols with

 rounds, local memory
, # machines .

R
s q

L = O(R) m = Õ(s1+ϵlog q)

L m

R = O(L)
s = O(m) q = O(N2)

Log-depth proof ideas
Component 1: Bidirectional
relationship between transformers and
MPC distributed computing model 
[S-Hsu-Telgarsky ’24].

Component 2: Equivalence classes of
graph algorithmic tasks in MPC model
[Nanongkai-Scquizzato ’22].

Log-depth theoretical results
Parallelizable LDW construction: Transformers of depth

 and width can solve any
parallelizable task.

Parallelizable LDP construction: Transformers of depth
 and width with blank input

tokens can solve any parallelizable task.

Parallelizable log-depth optimality result: All transformers of width
 and blank tokens that solve any

parallelizable task have depth .

Search LDW construction: Transformers of depth
and width can solve any search task.

Search depth equivalence: If one search task can be solved by
transformers of depth , width , and pause
tokens, then all search tasks can be solved with depth ,
width and phase tokens.

L = O(log N) m = O(N0.5+ϵ)

L = O(log N) m = O(Nϵ) N′ = NO(1)

m = O(N1−ϵ) N′ = NO(1)

L = Ω(log N)

L = O(log N)
m = O(N0.5+ϵ)

L m = NO(1) N′ = NO(1)

L + O(1)
O(m) O(N′) + NO(1)

Experiments
GraphQA dataset:

• Suite of algorithmic tasks on small  
graph instances (5-20 nodes).

• Originally designed for “Talk Like a Graph” evaluation of LLM prompting strategies [Fatemi-
Halcrow-Perozzi ’24].

Models/training regimes:

• 60M-parameter vanilla transformer trained from scratch.

• 11B-parameter pre-trained LLM fine-tuned on GraphQA.

• 62B PaLM LLMs with different prompting strategies [FHP24].

• Various GNN models, including hybrid models used in GraphToken paper [Perozzi, et al ’24].

• Sample complexities: 1k vs 100k graph instances.

Experiments
Takeaway #1: GNNs more effectively extract local structure from graphs
than transformers in a sample-efficient manner.

• While transformers can efficiently 
solve these tasks, GNNs have 
nice inductive biases for “local” 
solutions.

Experiments
Takeaway #2: While GNNs learn better heuristics with few samples for
paralellizable tasks, transformers make better use of more samples.

• Reflects gap in representational capabilities 
of transformers and GNNs on these 
tasks.

• GNN inductive biases help when there 
aren’t enough samples actually solve 
the task.

Connectivity Task

Experiments
Takeaway #3: Dominance of randomly-initialized and fine-tuned
transformers over prompting-based strategies on LLMs.

‣ LLMs aren’t incidentally learning to solve these tasks on their datasets.

Experiments
Sample complexity experiments for each task with 60M transformers:

What’s next?

• Fine-grained exploration of task difficulty in larger graph instances and size
generalization.

• Generalizations of theoretical results and connections to computational
complexity.

• Re-examining assumption of arbitrary MLPs.

Thank you

