Transformers and graph algorithms Clayton Sanford July 12, 2024

Collaboration with Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow, Bryan Perozzi, Vahab Mirrokni

Motivating questions

- Transformers as general-purpose neural networks (in comparison to LSTMs, CNNs, GNNs)?
- connectivity, shortest path) and GNN comparisons.

Algorithmic powers and limitations of transformer models?

Focus on graph algorithmic tasks (e.g. edge existence,

Contributions

Studied graph algorithmic tasks as sequential inputs to "vanilla" transformers.

Theory: representational hierarchy of tasks, contrasts with GNNs.

Empirical: exploratory analysis of learnability of graph tasks:

- Models: transformers vs GNNs.
- Training regimes: trained from scratch, fine-tuning, prompting.

Takeaways

- 1. GNNs \gg transformers on "local" tasks, like edge existence.
- 2. Transformers \gg GNNs on "global" and parallelizable tasks, like connectivity.
- 3. Small transformers (~20M parameters) trained from scratch outperform prompting of LLMs (~10B parameter) on small graphs.

Attention head:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV.$ Parameters: $Q, K, V \in \mathbb{R}^{d \times m}$.

Attention head:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV.$ Parameters: $Q, K, V \in \mathbb{R}^{d \times m}.$

Attention head:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV.$ Parameters: $Q, K, V \in \mathbb{R}^{d \times m}$.

Attention head:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV.$ Parameters: $Q, K, V \in \mathbb{R}^{d \times m}.$

Multi-headed attention: $g(X) = X + \sum_{h=1}^{H} f_h(X).$

Attention head:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV.$ Parameters: $Q, K, V \in \mathbb{R}^{d \times m}$.

Multi-headed attention: $g(X) = X + \sum_{h=1}^{H} f_h(X).$

Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N)).$

Attention head:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV.$ Parameters: $Q, K, V \in \mathbb{R}^{d \times m}.$

Multi-headed attention: $g(X) = X + \sum_{h=1}^{H} f_h(X).$

Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N)).$

Full transformer:

 $T(X) = (\phi_L \circ g_L \circ \dots \circ g_1 \circ \phi_0)(X).$

Attention head:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV.$ Parameters: $Q, K, V \in \mathbb{R}^{d \times m}.$

Multi-headed attention: $g(X) = X + \sum_{h=1}^{H} f_h(X).$

Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N)).$

Full transformer: $T(X) = (\phi_L \circ g_L \circ \ldots \circ g_1 \circ \phi_0)(X).$

Key assumptions: $m, H, L \ll N$; arbitrary MLPs ϕ_{ℓ} .

Transformer for graph-based tasks [Min, et al '22]

- 1. Auxiliary GNNs: separate transformers and GNNs included in the same model.
- 2. Graph positional encoding: embed graph Laplacians or other info in tokenized positional encoding.
- 3. Adjacency-based attention: soft or hard masking of non-adjacent nodes in positional encoding.
- 4. "Pure transformers": vanilla transformer models with vertices and edges naively encoded as inputs.

Prior work on transformer capabilities

Inefficient simulation of "serial" algorithms: Turing machines can be thought tokens [Merrill-Sabharwal '23].

can be simulated by TC⁰ circuits [MS23].

Transformers as communication models: Representational equivalence computing model [S-Hsu-Telgarsky '23 & '24].

- simulated by transformers with large depth [Yun, et al '19] or many chain-of-
- Limitations of constant-depth transformers: Constant-depth transformers
- between transformers and Massively Parallel Computation (MPC) distributed

Transformers and graph connectivity

Inefficient simulation of "serial" algorithms:

 \swarrow poly(N)-depth or poly(N)-CoT transformer.

Limitations of constant-depth transformers:

(1)-depth poly(N)-width transformers.

Transformers as communication models: $\operatorname{log}(N)$ -depth $N^{0.1}$ -width transformers (optimal depth).

Message-Passing Graph Neural Networks (MPNNs) [Gilmer et al '17]

- Original motivation: chemistry.
- Input graphs restrict sharing of information between adjacent nodes.
- Nodes pass embeddings as "messages" to neighbors and aggregate received messages.

Limitations of GNNs

Weisfeiler-Lehman (WL) isomorphism test:

Featureless GNNs can distinguish non-isomorphic graphs only if distinguishable by WL-test [Xu et al '18].

CONGEST: Each GNN layer can be simulated by 1 round of CONGEST distributed computing [Loukas '19].

GNNs and graph connectivity

Weisfeiler-Lehman (WL) isomorphism test:

X featureless GNNs can distinguish between connected and disconnected graphs.

CONGEST:

K GNNs solving connectivity with depth *L* and width *m* satisfying $L\sqrt{m} = \tilde{O}(N)$.

Motivation

Transformers have more parameterefficient solutions to connectivity than GNNs ($L = O(\log N)$, $m = N^{\epsilon}$ vs $L\sqrt{m} = \Omega(\sqrt{N})$).

Question 1: Does this apply to other basic graph algorithms tasks?

Question 2: Do transformers outperform GNNs on learnability, not just expressivity?

Theoretical results

Partition of graph algorithmic tasks into transformer parameter-complexity equivalence classes.

- **Retrieval tasks:** node count, edge count, node degree, node existence.
- **Parallelizable tasks**: connectivity, cycle check, minimum spanning forest, # connected components, bipartiteness, planarity.
- Search tasks: shortest path, diameter, reachability.

Transformer parameter size regimes:

- **Depth 1 (D1)**: depth L = 1, width $m = O(N^{\epsilon}).$
- Log-depth (LD): $L = O(\log N)$, $m = O(N^{\epsilon}).$
- Log-depth with blank "pause" tokens **(LDP)**: $L = O(\log N), m = O(N^{\epsilon}),$ blank tokens $N' = N^{O(1)}$
- Log-depth/large width (LDW): $L = O(\log N), m = O(N^{0.5 + \epsilon}).$

Theoretical results

Partition of graph algorithmic tasks into transformer parameter-complexity equivalence classes.

- Retrieval tasks: node count, edge count, node degree, node existence.
- **Parallelizable tasks**: connectivity, cycle check, minimum spanning forest, # connected components, bipartiteness, planarity.
- Search tasks: shortest path, diameter, reachability.

Task class	Example tasks	Complexity	
Retrieval (§3.3) L = 1 $m = O(\log N)$	Node count Edge count Edge existence Node degree	D1 D1 D1 D1	
Parallelizable (§3.1)	Connectivity	LD	
$L = O(\log N)$	Cycle check	LDP∩ LDW	
$m = O(N^{\epsilon})$	Bipartiteness	LDP∩ LDW	
Search (§3.2)	Shortest path	LDW	
$L = O(\log N)$ $m = O(N^{1/2+\epsilon})$	Diameter	LDW	

Depth-1 theoretical results

Positive results: There exist D1 transformers $(L = 1, m = O(N^{\epsilon}))$ that solve all retrieval tasks (node count, edge count, node degree, edge existence).

- Construction depends on sinusoidal embedding of each vertex.

Depth-1 theoretical results

Negative results: No D1 transformer can solve graph connectivity (or cycle check or shortest path).

- **Note:** Already known for constant-depth transformers because these tasks cannot be computed by TC⁰ circuits [MS'23].
- Consequence of Alice/Bob communication complexity reduction [S-Hsu-Telgarsky '23].
 - Solution to connectivity implies O(m)-bit communication protocol for solving disjointness: $\max a_i b_i$.

Log-depth theoretical results

Parallelizable tasks: connectivity, cycle minimum spanning forest, # connected bipartiteness, planarity.

Parallelizable LDW construction: Transformers of depth $L = O(\log N)$ and width $m = O(N^{0.5+\epsilon})$ can solve any parallelizable task.

Parallelizable LDP construction: Transformers of depth $L = O(\log N)$ and width $m = O(N^{\epsilon})$ with $N' = N^{O(1)}$ blank input tokens can solve any parallelizable task.

Parallelizable log-depth optimality result: All transformers of width $m = O(N^{1-\epsilon})$ and $N' = N^{O(1)}$ blank tokens that solve any parallelizable task have depth $L = \Omega(\log N)$.

check,
omponents,

	Task class		Example tasks	Complexity
_	Retrieval (§3.3) L = 1 $m = O(\log N)$		Node count Edge count Edge existence Node degree	D1 D1 D1 D1
	Parallelizable (§ $L = O(\log N)$ $m = O(N^{\epsilon})$	§ <mark>3.1</mark>)	Connectivity Cycle check Bipartiteness	LD LDP∩ LDW LDP∩ LDW
	Search (§3.2) $L = O(\log N)$ $m = O(N^{1/2+})$	· ()	Shortest path Diameter	LDW LDW
		Pa	rallelizable	
	LDP		LD	LDVV Search
S			D1	
at			Retrieval	

Log-depth theoretical results

Search tasks: shortest path, diameter

Search LDW construction: Transforme $L = O(\log N)$ and width $m = O(N^{0.5})$ any search task.

Search depth equivalence: If one search be solved by transformers of depth L, $m = N^{O(1)}$, and $N' = N^{O(1)}$ pause tok search tasks can be solved with depth width O(m) and $O(N') + N^{O(1)}$ phase

_				
	Task class		Example tasks	Complexity
r, reachability.	Retrieval (§3.3) L = 1 $m = O(\log N)$		Node count Edge count Edge existence Node degree	D1 D1 D1 D1
$(+\epsilon)$ can solve	Parallelizable (§3.1) $L = O(\log N)$ $m = O(N^{\epsilon})$		Connectivity Cycle check Bipartiteness	LD LDP∩ LDW LDP∩ LDW
ch task can	Search (§3.2) $L = O(\log N)$ $m = O(N^{1/2+\epsilon})$		Shortest path Diameter	LDW LDW
width ens then all		Pa	rallelizable	
hL + O(1),	LDP		LD	LDW Search
e tokens.]	D1 Retrieval	

.

1

Log-depth proof ideas

Component 1: Bidirectional relationship between transformers and MPC distributed computing model [**S**-Hsu-Telgarsky '24].

Component 2: Equivalence classes of graph algorithmic tasks in MPC model [Nanongkai-Scquizzato '22].

Example tasks	Complexity
Node count Edge count Edge existence Node degree	D1 D1 D1 D1
.1) Connectivity Cycle check Bipartiteness	LD LDP∩ LDW LDP∩ LDW
Shortest path Diameter	LDW LDW
Derellelizable	
Paranenzable	
LD	LDW Search
D1 Retrieval	
	Example tasksNode count Edge count Edge existence Node degree.1)Connectivity Cycle check BipartitenessShortest path DiameterD1 Retrieval

.

1

Massively Parallel Computation (MPC)

Computational model of MapReduce [Karloff et al, '10]

- Input divided among $q = O(N^{\delta})$ machines with local memory s $(qs = O(N^{1+\gamma})).$
- Round r = 1, ..., R:
 - Each machine performs computations on local memory.
 - Each machine sends and receives $\leq s$ bits of information.

= synchronization

Component 2: MPC graph equivalence classes

Low memory equivalence:

If a parallelizable task can be solved by an MPC protocol with $s = O(N^{\epsilon})$ local memory, R rounds, and $q = N^{O(1)}$ machines, then all parallelizable tasks can be solved with O(s) local memory, R + O(1) rounds, $q + N^{O(1)}$ machines.

- Positive theorem: Connectivity can be solved with $s = O(N^{\epsilon})$, $R = O(\log N)$, $qs = O(N^{1+\epsilon})$.
- Negative conjecture: connectivity requires $R = \Omega(\log N)$ if $s = O(N^{1-\epsilon})$, $qs = N^{O(1)}$.

Component 2: MPC graph equivalence classes

Low memory equivalence:

If a search task can be solved by an MPC protocol with $s = O(N^{\epsilon})$ local memory, R rounds, and $q = N^{O(1)}$ machines, then all search tasks can be solved with O(s) local memory, R + O(1) rounds, $q + N^{O(1)}$ machines.

Component 2: MPC graph equivalence classes

High memory capability:

All NC¹ circuits can be simulated with $s = O(N^{0.5+\epsilon})$ local memory,

q = O(N) machines, $L = O(\log N)$ rounds.

- All parallelizable and search tasks belong to L and NL.
- $L \subseteq NL \subseteq NC^1$.

Component 1: Transformer/MPC relationship

Transformers simulate MPC [SHT24]: *R*-round MPC protocols with local memory *s*, # machines *q* can be simulated by transformers of depth L = R + 1, width $m = \tilde{O}(s^4 \log q)$.

MPC simulates transformers [SHT24]: Transformers with depth L, width m can be simulated by MPC protocols with R = O(L) rounds, local memory s = O(m), # machines $q = O(N^2)$.

Component 1: Transformer/MPC relationship

Transformers simulate MPC [Improved!]: *R*-round MPC protocols with local memory *s*, # machines *q* can be simulated by transformers of depth L = O(R), width $m = \tilde{O}(s^{1+\epsilon} \log q)$.

MPC simulates transformers [SHT24]: Transformers with depth *L*, width *m* can be simulated by MPC protocols with R = O(L) rounds, local memory s = O(m), # machines $q = O(N^2)$.

Component 1: Transformer/MPC relationship

Transformers simulate MPC [Improved!]: *R*-round MPC protocols with local memory *s*, # machines *q* can be simulated by transformers of depth L = O(R), width $m = \tilde{O}(s^{1+\epsilon} \log q)$.

MPC simulates transformers [SHT24]: Transformers with depth *L*, width *m* can be simulated by MPC protocols with R = O(L) rounds, local memory s = O(m), # machines $q = O(N^2)$.

Log-depth proof ideas

Component 1: Bidirectional relationship between transformers and MPC distributed computing model [**S**-Hsu-Telgarsky '24].

Component 2: Equivalence classes of graph algorithmic tasks in MPC model [Nanongkai-Scquizzato '22].

Example tasks	Complexity
Node count Edge count Edge existence Node degree	D1 D1 D1 D1
.1) Connectivity Cycle check Bipartiteness	LD LDP∩ LDW LDP∩ LDW
Shortest path Diameter	LDW LDW
Derellelizable	
Paranenzable	
LD	LDW Search
D1 Retrieval	
	Example tasksNode count Edge count Edge existence Node degree.1)Connectivity Cycle check BipartitenessShortest path DiameterD1 Retrieval

.

1

Log-depth theoretical results

Parallelizable LDW construction: Transformers of $C = O(\log N)$ and width $m = O(N^{0.5+\epsilon})$ can solve parallelizable task.

Parallelizable LDP construction: Transformers of d $L = O(\log N)$ and width $m = O(N^{\epsilon})$ with N' = Ntokens can solve any parallelizable task.

Parallelizable log-depth optimality result: All transform $m = O(N^{1-\epsilon})$ and $N' = N^{O(1)}$ blank tokens that so parallelizable task have depth $L = \Omega(\log N)$.

Search LDW construction: Transformers of depth and width $m = O(N^{0.5+\epsilon})$ can solve any search ta

Search depth equivalence: If one search task can transformers of depth *L*, width $m = N^{O(1)}$, and N' tokens, then all search tasks can be solved with d width O(m) and $O(N') + N^{O(1)}$ phase tokens.

denth	Task class		Example tasks	Complexity
ve any	Retrieval (§3.3) L = 1 $m = O(\log N)$		Node count Edge count Edge existence Node degree	D1 D1 D1 D1
depth V ^{O(1)} blank input	Parallelizable (§3.1) $L = O(\log N)$ $m = O(N^{\epsilon})$		arallelizable (§3.1)Connectivity $= O(\log N)$ Cycle check $n = O(N^{\epsilon})$ Bipartiteness	
formers of width	Search (§3.2) $L = O(\log N)$ $m = O(N^{1/2+\epsilon})$		Shortest path Diameter	LDW LDW
solve any		Pa	rallelizable	
$L = O(\log N)$ LDP ask.			LD	LDW Search
be solved by $Y' = N^{O(1)}$ pause lepth $L + O(1)$,			D1 Retrieval	

.

1

GraphQA dataset:

- Suite of algorithmic tasks on small graph instances (5-20 nodes).
- Originally designed for "Talk Like a Graph" evaluation of LLM prompting strategies [Fatemi-Halcrow-Perozzi '24].

Models/training regimes:

- 60M-parameter vanilla transformer trained from scratch.
- 11B-parameter pre-trained LLM fine-tuned on GraphQA.
- 62B PaLM LLMs with different prompting strategies [FHP24].
- Various GNN models, including hybrid models used in GraphToken paper [Perozzi, et al '24].
- Sample complexities: 1k vs 100k graph instances.

Takeaway #1: GNNs more effectively extract local structure from graphs than transformers in a sample-efficient manner.

 While transformers can efficiently solve these tasks, GNNs have nice inductive biases for "local" solutions.

	Node	Degree	Cycle Check		
Model	1K	100K	1K	100K	
GCN [42] MPNN [26] GIN [82]	9.8 99.4 36.2	9.4 99.8 37.8	83.2 99.0 98.8	83.2 100.0 83.2	
60M transformer 11B transformer (FT)	31.6 68.8	91.7	97.1 98.0	98.0	

Takeaway #2: While GNNs learn better heuristics with few samples for paralellizable tasks, transformers make better use of more samples.

- Reflects gap in representational cap of transformers and GNNs on these tasks.
- GNN inductive biases help when the aren't enough samples actually solv the task.

		 •
72	\mathbf{n}	
Ja		してい

Connectivity	Task

		# of training samples		
0K0	Model	1K	100K	
ere /e	GCN [42] MPNN [26] GIN [82]	50.2 66.8 54.0	55.0 72.6 58.6	
	60M transformer 11B transformer (FT)	57.4 92.8	97.1	

Takeaway #3: Dominance of randomly-initialized and fine-tuned transformers over prompting-based strategies on LLMs.

	Retrieval tasks				Parallelizable Tasks		Search Tasks	Subgraph Counting	
	Method	Node count	Edge count	Edge existence	Node degree	Connectivity	Cycle check	Shortest path	Triangle counting
	ZERO-SHOT [22]	21.7	12.4	44.5	14.0	84.9	76.0	11.5	1.5
ting	ZERO-COT [22]	14.6	9.4	33.5	10.4	73.5	32.3	33.6	12.7
mpt	FEW-SHOT [22]	25.3	12.0	36.8	17 .4	79.4	37.4	22.7	3.0
Pro	COT [22]	27.6	12.8	42.8	29.2	45.2	58.0	38.6	8.1
	COT-BAG [22]	26.9	12.5	37.3	28.0	45.2	52.1	40.4	8.1
Ours	60M transformer-1K	<u>100.0</u>	<u>100.0</u>	67.6	31.5	92.9	<u>97.1</u>	57.4	<u>33.4</u>
	60M transformer-100K	100.0	100.0	<u>96.1</u>	91.7	<u>98.0</u>	98.0	<u>97.2</u>	40.5
	11B transformer (FT)-1K	100.0	45.0	100.0	<u>68.8</u>	98.4	98.0	92.8	26.0

LLMs aren't incidentally learning to solve these tasks on their datasets.

Sample complexity experiments for each task with 60M transformers:

What's next?

- generalization.
- Generalizations of theoretical results and connections to computational complexity.
- Re-examining assumption of arbitrary MLPs.

Fine-grained exploration of task difficulty in larger graph instances and size

Thank you

