
Collaboration with Bahare Fatemi, Ethan Hall, Anton Tsitsulin,  
Mehran Kazemi, Jonathan Halcrow, Bryan Perozzi, Vahab Mirrokni 

Transformers 
and graph 
algorithms
Clayton Sanford 
July 12, 2024



Motivating questions

• Algorithmic powers and limitations of transformer models? 


• Transformers as general-purpose neural networks (in 
comparison to LSTMs, CNNs, GNNs)? 


➡Focus on graph algorithmic tasks (e.g. edge existence, 
connectivity, shortest path) and GNN comparisons.



Contributions
Studied graph algorithmic tasks as 
sequential inputs to “vanilla” transformers.


Theory: representational hierarchy of 
tasks, contrasts with GNNs.


Empirical: exploratory analysis of 
learnability of graph tasks:


• Models: transformers vs GNNs.


• Training regimes: trained from scratch, 
fine-tuning, prompting.



Takeaways

1. GNNs  transformers on “local” 
tasks, like edge existence.


2. Transformers  GNNs on “global” 
and parallelizable tasks, like 
connectivity.


3. Small transformers (~20M 
parameters) trained from scratch 
outperform prompting of LLMs 
(~10B parameter) on small graphs.
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≫



Transformer model

5

Input X ∈ ℝN×d

Transformer T

Output T(X) ∈ ℝN×d



Transformer model
Attention head: 

.  
Parameters: .
f(X) = softmax(XQKTXT)XV

Q, K, V ∈ ℝd×m

6

Input X ∈ ℝN×d

Attention 
head f

Output f(X) ∈ ℝN×m



Transformer model
Attention head: 

.  
Parameters: .
f(X) = softmax(XQKTXT)XV

Q, K, V ∈ ℝd×m

7

 XQ

ℝN×m

 XV

ℝN×m

    KT XT ℝN×m( )f(X) = softmax × ×

=
 XV

ℝN×m


softmax(XQKTXT)
ℝN×N

×



Transformer model
Attention head: 

.  
Parameters: .
f(X) = softmax(XQKTXT)XV

Q, K, V ∈ ℝd×m

8

Input X ∈ ℝN×d

Attention 
head f

Output f(X) ∈ ℝN×m



Transformer model
Attention head: 

.  
Parameters: .


Multi-headed attention:  

.

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)
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Transformer model
Attention head: 

.  
Parameters: .


Multi-headed attention:  

. 

Element-wise multi-layer perceptron (MLP): 
.

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))
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Transformer model
Attention head: 

.  
Parameters: .


Multi-headed attention:  

. 

Element-wise multi-layer perceptron (MLP): 
. 

Full transformer: 
.

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)
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Transformer model
Attention head: 

.  
Parameters: .


Multi-headed attention:  

. 

Element-wise multi-layer perceptron (MLP): 
. 

Full transformer: 
.


Key assumptions:  
; arbitrary MLPs .

f(X) = softmax(XQKTXT)XV
Q, K, V ∈ ℝd×m

g(X) = X +
H

∑
h=1

fh(X)

ϕ(X) = (ϕ(x1), …, ϕ(xN))

T(X) = (ϕL ∘ gL ∘ … ∘ g1 ∘ ϕ0)(X)

m, H, L ≪ N ϕℓ
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Transformer for graph-based tasks 
[Min, et al ’22]
1. Auxiliary GNNs: separate transformers and 

GNNs included in the same model.


2. Graph positional encoding: embed graph 
Laplacians or other info in tokenized positional 
encoding.


3. Adjacency-based attention: soft or hard 
masking of non-adjacent nodes in positional 
encoding.


4. “Pure transformers”: vanilla transformer 
models with vertices and edges naively 
encoded as inputs.



Prior work on transformer capabilities

Inefficient simulation of “serial” algorithms: Turing machines can be 
simulated by transformers with large depth [Yun, et al ’19] or many chain-of-
thought tokens [Merrill-Sabharwal ’23].


Limitations of constant-depth transformers: Constant-depth transformers 
can be simulated by TC0 circuits [MS23].


Transformers as communication models: Representational equivalence 
between transformers and Massively Parallel Computation (MPC) distributed 
computing model [S-Hsu-Telgarsky ’23 & ’24].



Transformers and graph connectivity

Inefficient simulation of “serial” 
algorithms:  
✅ -depth or -CoT 
transformer. 


Limitations of constant-depth 
transformers:  
❌ -depth -width transformers.


Transformers as communication models:  
✅ -depth -width transformers 
(optimal depth).

poly(N) poly(N)

O(1) poly(N)

log(N) N0.1



Message-Passing Graph Neural Networks 
(MPNNs) [Gilmer et al ’17]
• Original motivation: chemistry.


• Input graphs restrict sharing of 
information between adjacent 
nodes.


• Nodes pass embeddings as 
“messages” to neighbors and 
aggregate received messages.



Limitations of GNNs

Weisfeiler-Lehman (WL) 
isomorphism test:  
Featureless GNNs can distinguish 
non-isomorphic graphs only if 
distinguishable by WL-test  
[Xu et al ’18]. 


CONGEST: Each GNN layer can be 
simulated by 1 round of CONGEST 
distributed computing  
[Loukas ’19]. 



GNNs and graph connectivity

Weisfeiler-Lehman (WL) 
isomorphism test: 
❌ featureless GNNs can distinguish 
between connected and 
disconnected graphs.


CONGEST:  
❌ GNNs solving connectivity with 
depth  and width  satisfying 

.

L m

L m = Õ(N)



Motivation

Transformers have more parameter-
efficient solutions to connectivity than 
GNNs  ( ,  vs 

).


Question 1: Does this apply to other 
basic graph algorithms tasks?


Question 2: Do transformers outperform 
GNNs on learnability, not just 
expressivity? 

L = O(log N) m = Nϵ

L m = Ω( N)



Theoretical results
Partition of graph algorithmic tasks 
into transformer parameter-complexity 
equivalence classes. 


• Retrieval tasks: node count, edge 
count, node degree, node existence.


• Parallelizable tasks: connectivity, 
cycle check, minimum spanning 
forest, # connected components, 
bipartiteness, planarity.


• Search tasks: shortest path, 
diameter, reachability.

Transformer parameter size regimes:


• Depth 1 (D1): depth , width 
.


• Log-depth (LD):  , 
.


• Log-depth with blank “pause” tokens 
(LDP):  

, , blank tokens 
.


• Log-depth/large width (LDW): 
, .

L = 1
m = O(Nϵ)

L = O(log N)
m = O(Nϵ)

L = O(log N) m = O(Nϵ)
N′ = NO(1)

L = O(log N) m = O(N0.5+ϵ)
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Depth-1 theoretical results
Positive results: There exist D1 transformers 
( , ) that solve all retrieval tasks 
(node count, edge count, node degree, edge 
existence).


• Construction depends on sinusoidal embedding 
of each vertex.

L = 1 m = O(Nϵ)



Depth-1 theoretical results
Negative results: No D1 transformer can solve graph 
connectivity (or cycle check or shortest path).


• Note: Already known for constant-depth 
transformers because these tasks cannot be 
computed by TC0 circuits [MS’23].


• Consequence of Alice/Bob communication 
complexity reduction  
[S-Hsu-Telgarsky ’23].


• Solution to connectivity implies -bit 
communication protocol for solving disjointness: 

.

O(m)

max
i

aibi



Log-depth theoretical results
Parallelizable tasks: connectivity, cycle check, 
minimum spanning forest, # connected components, 
bipartiteness, planarity.


Parallelizable LDW construction: Transformers of depth 
 and width  can solve any 

parallelizable task.


Parallelizable LDP construction: Transformers of depth 
 and width  with  

blank input tokens can solve any parallelizable task.


Parallelizable log-depth optimality result: All transformers 
of width  and  blank tokens that 
solve any parallelizable task have depth .

L = O(log N) m = O(N0.5+ϵ)

L = O(log N) m = O(Nϵ) N′ = NO(1)

m = O(N1−ϵ) N′ = NO(1)

L = Ω(log N)



Log-depth theoretical results
Search tasks: shortest path, diameter, reachability.


Search LDW construction: Transformers of depth 
 and width  can solve 

any search task.


Search depth equivalence: If one search task can 
be solved by transformers of depth , width 

, and  pause tokens, then all 
search tasks can be solved with depth , 
width  and  phase tokens.

L = O(log N) m = O(N0.5+ϵ)

L
m = NO(1) N′ = NO(1)

L + O(1)
O(m) O(N′ ) + NO(1)



Log-depth proof ideas
Component 1: Bidirectional 
relationship between transformers and 
MPC distributed computing model 
[S-Hsu-Telgarsky ’24]. 


Component 2: Equivalence classes of 
graph algorithmic tasks in MPC model 
[Nanongkai-Scquizzato ’22].



Computational model of 
MapReduce [Karloff et al, ’10]


• Input divided among  
machines with local memory  
( ).


• Round :


• Each machine performs 
computations on local memory.


• Each machine sends and 
receives  bits of information.

q = O(Nδ)
s

qs = O(N1+γ)
r = 1,…, R

≤ s

Massively Parallel Computation (MPC) 



Component 2: MPC graph equivalence classes

Low memory equivalence:  
If a parallelizable task can be solved by an 
MPC protocol with  local memory, 

 rounds, and  machines, then all 
parallelizable tasks can be solved with  
local memory,  rounds,  
machines.


• Positive theorem: Connectivity can be 
solved with , , 

.


• Negative conjecture: connectivity requires 
 if , .

s = O(Nϵ)
R q = NO(1)

O(s)
R + O(1) q + NO(1)

s = O(Nϵ) R = O(log N)
qs = O(N1+ϵ)

R = Ω(log N) s = O(N1−ϵ) qs = NO(1)

Parallelizable tasks

Search tasks



Component 2: MPC graph equivalence classes

Low memory equivalence:  
If a search task can be solved by an  
MPC protocol with  local memory, 

 rounds, and  machines, then all 
search tasks can be solved with   
local memory,  rounds,  
machines.


• Positive theorem: Connectivity can be 
solved with , , 

.


• Negative conjecture: connectivity requires 
 if , .

s = O(Nϵ)
R q = NO(1)

O(s)
R + O(1) q + NO(1)

s = O(Nϵ) R = O(log N)
qs = O(N1+ϵ)

R = Ω(log N) s = O(N1−ϵ) qs = NO(1)

Parallelizable tasks

Search tasks



Component 2: MPC graph equivalence classes

High memory capability:  
All NC1 circuits can be simulated with 

 local memory, 
 machines,  

rounds.


• All parallelizable and search tasks 
belong to L and NL.


• L  NL  NC1.

s = O(N0.5+ϵ)
q = O(N) L = O(log N)

⊆ ⊆

Parallelizable tasks

Search tasks



Component 1: Transformer/MPC relationship

Transformers simulate MPC [SHT24]:  
-round MPC protocols with local 

memory , # machines  can be 
simulated by transformers of depth 

, width . 

MPC simulates transformers [SHT24]:  
Transformers with depth , width  can 
be simulated by MPC protocols with 

 rounds, local memory 
, # machines .

R
s q

L = R + 1 m = Õ(s4log q)

L m

R = O(L)
s = O(m) q = O(N2)

Attention head
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Local
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hashing
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Log-depth theoretical results
Parallelizable LDW construction: Transformers of depth 

 and width  can solve any 
parallelizable task.


Parallelizable LDP construction: Transformers of depth 
 and width  with  blank input 

tokens can solve any parallelizable task.


Parallelizable log-depth optimality result: All transformers of width 
 and  blank tokens that solve any 

parallelizable task have depth .


Search LDW construction: Transformers of depth  
and width  can solve any search task.


Search depth equivalence: If one search task can be solved by 
transformers of depth , width , and  pause 
tokens, then all search tasks can be solved with depth , 
width  and  phase tokens.

L = O(log N) m = O(N0.5+ϵ)

L = O(log N) m = O(Nϵ) N′ = NO(1)

m = O(N1−ϵ) N′ = NO(1)

L = Ω(log N)

L = O(log N)
m = O(N0.5+ϵ)

L m = NO(1) N′ = NO(1)

L + O(1)
O(m) O(N′ ) + NO(1)



Experiments
GraphQA dataset:


• Suite of algorithmic tasks on small  
graph instances (5-20 nodes).


• Originally designed for “Talk Like a Graph” evaluation of LLM prompting strategies [Fatemi-
Halcrow-Perozzi ’24]. 


Models/training regimes: 

• 60M-parameter vanilla transformer trained from scratch.


• 11B-parameter pre-trained LLM fine-tuned on GraphQA.


• 62B PaLM LLMs with different prompting strategies [FHP24].


• Various GNN models, including hybrid models used in GraphToken paper [Perozzi, et al ’24].


• Sample complexities: 1k vs 100k graph instances.



Experiments
Takeaway #1: GNNs more effectively extract local structure from graphs 
than transformers in a sample-efficient manner.  

• While transformers can efficiently 
solve these tasks, GNNs have 
nice inductive biases for “local” 
solutions.



Experiments
Takeaway #2: While GNNs learn better heuristics with few samples for 
paralellizable tasks, transformers make better use of more samples. 

• Reflects gap in representational capabilities 
of transformers and GNNs on these 
tasks.


• GNN inductive biases help when there 
aren’t enough samples actually solve 
the task. 

Connectivity Task



Experiments
Takeaway #3: Dominance of randomly-initialized and fine-tuned 
transformers over prompting-based strategies on LLMs. 

‣ LLMs aren’t incidentally learning to solve these tasks on their datasets.



Experiments
Sample complexity experiments for each task with 60M transformers:



What’s next?

• Fine-grained exploration of task difficulty in larger graph instances and size 
generalization.


• Generalizations of theoretical results and connections to computational 
complexity.


• Re-examining assumption of arbitrary MLPs.



Thank you 


