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Many unanswered questions about NN theory

 Why does gradient descent attain near zero training loss? (Optimization)

 Why do models attain low test error despite overfitting and having more
parameters than samples? (Benign overfitting)

 What are the properties of functions that gradient descent tends to converge
to and how do they relate to generalization? (Inductive bias)

 How do neural networks provably learn hierarchical functions layer-by-layer?
(Feature learning)

« How do representational capabilities and limitations very among NN
architectures? (Approximation)



Core approximation theory question

o Separation: What functions can be

represented by one model, but not by
another?

o (Classical example: Perceptron vs XOR
e Perceptron: x — sign(w' x — b)

 No perceptron can represent XOR
function

o But, feature expansions or two
Perceptrons can
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Introducing the perceptron — A machine which senses,

b

ds like the human mind.
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sTOR[ES about the creation of machines having
human qualities have long been a fascinating province
in the realm of science fiction. Yet we are now about to
witness the birth of such a machine — a machine capable
of perceiving, recognizing, and identifying its surround-
ings without any human training or control.

Development of that machine has stemmed from a
search for an understanding of the physical mechanisms
which underlic human experience and intelligence. The
question of the nature of these processes is at least as
ancient as any other question in western science and
philosophy, and, indeed, ranks as one of the greatest
scientific challenges of our time,

Our understanding of this problem has gone perhaps
as far as had the development of physics before Newton.
We have some excellent descriptions of the phenomena
to be explained, a number of interesting hypotheses, and
a litle detailed knowledge about events in the nervous
system. But we lack agreement on any integrated set of
principles by which the functioning of the nervous
system can be understood.

We believe now that this ancient problem is about
to yield to our theoretical investigation for three reasons:

P

First, in recent years our knowledge of the function-
ing of individual cells in the central nervous system has
vastly increased.

Second, large numbers of engineers and mathema-
ticians are, for the first time, undertaking serious study
of the mathematical basis for thinking, perception, and
the handling of information by the central nervous sys-
tem, l}\ll\ Pl’ﬂ\‘ldlng ‘hC hOpC lh«l( l)‘('\(' 1’r0b]('n\\ may
be within our intellectual grasp.

Third, recent developments in probability theory
and in the mathematics of random processes provide
new tools for the study of events in the nervous system,
\\‘h('r(‘ L)’Z]"' l)\(' Fl'o‘\ \llv.l‘)“t'.ll Ol'}',.\ﬂllﬂlil)ﬂ (b EAX\(!\\ n
and the precise cell-by-cell “wiring diagram™ may never
be obtained.

Receives Navy Support

In July, 1957, Project PARA (Perceiving and Recog-
nizing Automaton), an internal research program which
had been in progress for over a year at Cornell Acro-
nautical Laboratory, reccived the support of the Office
of Naval Research. The program had been concerned
primarily with the application of probability theory to




Universal Approximation Theorem

* Informal Theorem [Cybenko;
Funahashi; Hornik, Stinchcombe, White
,89]: L A

s S
. For any continuous f: R - R, € > 0, E ’ v\\ : \
and compact § C | d, there exists a ;4 TX e *
two-layer neural network g that e-point- xx@-}/ e )
wise approximates f on S. T, SIS oR; B

e Problem: no bound on the width of the
network needed!



Amended approximation theory question

e Separation: What functions can be represented efficiently

(I.e. poly width in relevant parameters) by one model, but not
by another?

d

» Depth separation: What functions f : R — R can be €
-approximated with poly(d)-width NNs of depth-(k + 1) and
require exp(d)-width to 0.1-approximate depth-k NNs?



2 VS 3 separations

. [Daniely *17] f(x) = sin(zd">(x, x'}) can be
approximated by poly(d)-width 3-layer NN, but
requires exp(d)-width (or exp(d) weights) to
approximate with 2-layer NN.

* Positive result: 1st approximate inner product, 2nd
approximate 1-d function

* Negative result: spherical harmonics,
inapproximability of f by low-degree polynomials

* Other 2 vs 3 separation: [Eldan, Shamir ’16], [Safran,
Shamir ’16}



\/k vs k separations
[Telgarsky ’16]

» Triangle map g : [0,1] — [0,1] with
g(x) = min(2x,1 — 2x).

. f(x) = g"(x) can be represented by O(k)
-depth NN of constant width, but requires

exp(k)-width to approximate with @(\/l_c)
-depth NN.

e Positive result: directly construct triangle map
with 2 RelLUs and iterate

 Negative result: bound maximum number of
oscillations of NN with width m and depth ¢



\/% vs k separations + dynamical systems
[Chatziafratis, et. al. ’20, '21], [Sanford, Chatziafratis, ’22]

f1(x)

- Question: Do other iterated functions f(x) = g*(x)
provide the highly-oscillatory property needed for °-
depth separation?
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* Yes. If g is a unimodal mapping, then:

 |f g has a cycle of length 3 (or any non-power-of-

two), then requires depth £2(k) to approximate f
with poly width.

 |f g only has power-of-two cycles, then a poly-width
two-layer NN can approximate f.

 Relates to Li-Yorke chaos: Period 3 =— Chaos




Limitations of depth-separation

Problem #1: All inapproximable functions seem to be
adversarial somehow, and “natural” functions are
easy to approximate.

e [Safran, Eldan, Shamir ’19] All 1-Lipschitz radial
functions can be 0.1-approximated w.r.t. L__ over

39(1) with poly(d)-width.

* Question: Does there exist a 1-Lipschitz function
with a 2-vs-3 separation?
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Limitations of depth-separation

Problem #2: Depth-separation does not imply optimization-separation.

 IMalach, Yehudai, Shalev-Shwartz, Shamir ‘21]
f cannot be efficiently weakly-approximated by depth-3 neural net =

f cannot be efficiently weakly-learned by gradient descent by any poly-
size neural net.

» Relies on ability to L,-approximate Lipschitz functions with depth-3
neural nets.



Approximation properties of random feature models
[Hsu, Sanford, Servedio, Vlatakis ’21]

* Question: What are the approximation powers and (W, b)

limitations of depth-2 neural networks with random
bottom-layer weights? Input #1

* Answer: Width necessary and sufficient to —@
approximate an L-Lipschitz function f € L,([—1,1]%) -1 1« -~ QR Ontpn
IS: RO

. .poly(d) if L = ®(1); ——_—
. poly(L) if d = O(1); | _
° and eXp(®(d)) |f L p— @(\/C_Z) Width 7 O\

 Some overlap in methodology and results with
[Bresler, Nagaraj *20]



Our setting

» fis L-Lipschitzif for all x,x" € [— 1,1]d,
| f(0) — f(x) | < Lilx = x|,

m

Neural net: g(x) = Z uDo({(w', x)—b") for

. . =1
(W, b)) ~ D, ReLU 6(z) = max(0,z).

o 2 approximates f if
If — gll = \/ = =11 LX) — g(x))?] <0.1.

» MinWidth, g, is the smallest m such that with
probability 0.9 over (W(i), b(i))ie[,,], there exists a
corresponding g with u that approximates .

Input #1

Input #2

Input #d — 1

Input #d

Width r

Output



Our results

Theorem 1 [Upper-bound]: For any L, d, there exists symmetric & such that
for all L-Lipschitz f € L,([—1,1]%):

MinWidth, o, = min(d®®), LOD).

Theorem 2 [Lower-bound]: For any L, d and any symmetric &, there exists
L-Lipschitz f(x) = sin(L{u, x)) such that:

MinWidth,, = min(d@*""), @)



Proving our upper-bound

Theorem 1 [Upper-bound]: For any L, d, there exists
symmetric & such that for all L-Lipschitz

f € Ly([—1,11%, MinWidth,, = min(d®L?), LO@),

_— T

Lemmg 7: Every L—L?pschitz f can be | Lemma 9: Exists symmetric &, such that every
approximated by a trigonometric polynomial of k-degree trigonometric polynomial P has
degree O(L). MinWidth,o, = min( dOK) 0@
+  Orthonormal basis for L,([—1,1]¢) with » Express each basis element as
V2 sin(z(K, x)),1/2 cos(z(K, x)) terms V2 sin(z(K, x)) = E,, y[hx(b, W)o({W, x) — b)]

 (Concentration bounds for Hilbert spaces



Proving our lower-bound

Theorem 2 [Lower-bound]: For any L, d and any
symmetric &, exists L-Lipschitz f(x)2= sin(L{u, x))
such that MinWidth, ¢, = min(d@**"”, L),

_— G

Lemma 11: For orthonormal The family
@15 - Py € Ly([—1,119) and N > r, then at T, = {x > /2sin(x(K,x)) : |K|l, < k)
least one @; will be inapproximable by the span contains min(dQ(Lz), L*9) orthonormal O(k)

of r functions. -Lipschitz functions.



Limitations of depth-separation

Problem #1: All inapproximable functions seem to be
adversarial somehow, and “natural” functions are easy to
approximate.

o [Safran, Eldan, Shamir ’19] All 1-Lipschitz radial
functions can be 0.1-approximated w.r.t. L over Jﬁd( 1)

with poly(d)-width.

* Question: Does there exist a 1-Lipschitz function with a
2-vs-3 separation?

» Answer: No (for L,)—every 1-Lipschitz function can

be represented with a poly-width 2-layer random
bottom-layer NN.
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Limitations of depth-separation

Problem #2: Depth-separation does not imply optimization-separation.

 IMalach, Yehudai, Shalev-Shwartz, Shamir ‘21]
f cannot be efficiently weakly-approximated by depth-3 neural net =

f cannot be efficiently weakly-learned by gradient descent by any poly-
size neural net.

» Relies on ability to L,-approximate Lipschitz functions with depth-3
neural nets.



Interesting current and future work

 Optimization separation: What functions can be provably learned with gradient
descent by one model, but not even approximated by another?

o [Safran, Lee ’22]: Ball-indicator function can be learned with 2-layer NNs with
activations on both layers, but not by 2-layer NNs with activations on only one.

 Norm-based separation: What functions can represented with low weight
norms in one architecture but not in another?

» Closer relationship to optimization/implicit biases of gradient descent.
e [Ongie, Willets, Soudry, Srebro '19], [Sanford, Ardeshir, Hsu '22 = ]

* Architecture-specific separations: Can certain functions be efficiently
represented with transformer models (or CNNs), but not with other models??






