
On the approximation power of
two-layer networks of random ReLUs

Clayton Sanford

Joint work with Daniel Hsu, Rocco Servedio, Manolis Vlatakis

Columbia University

April 8, 2022
MIT Algorithms & Complexity Seminar



Two-layer networks of random ReLUs (“random ReLU networks”)

x1 x2

g(1)(x) g(2)(x) g(r)(x)

f(x)

xd

· · ·

· · ·

f ∈ span
{
x 7→ max{0, w(i) · x− b(i)}︸ ︷︷ ︸

g(i)

: i ∈ [r]
}

,
(
(w(i),b(i))

)r
i=1

∼ D

1 / 16



Approximating Lipschitz functions by two-layer networks of random ReLUs

Two-layer networks of random ReLUs:

Fr := span
{
x 7→ max{0, w(i) · x− b(i)}︸ ︷︷ ︸

g(i)

: i ∈ [r]
}

,
(
(w(i),b(i))

)r
i=1

∼ D,

where D is probability distribution for bottom-level parameters (w(i),b(i)) ∈ Sd−1 × R

Question:

What is the minimum width r s.t. Fr can ε-approximate any L-Lipschitz functions in L2([−1, 1]d)
(with high probability)?

Pr
[
inf

f̂∈Fr

∥f̂ − f⋆∥L2([−1,1]d) ≤ ε
]
≥ 0.9 for all L-Lipschitz f∗ : [−1, 1]d → R

Our work: upper- and lower-bounds on this minimum width, for all d, ε, and L

∥f∥L2([−1,1]d) =
√

E
x∼Unif([−1,1]d)

[f(x)2]
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Motivations

1. Approximation capability of neural networks at (or near)
random initialization

[Andoni, Panigrahy, Valiant, & Zhang, ’14; Bach, ’17;

Ji, Telgarsky, & Xian, ’19; Yehudai & Shamir, ’19; . . . ]

and kernel methods

[Aizerman, Braverman, Rozonoer, ’64; Cho & Saul, ’09; . . . ]

2. Interplay between dimension d and relative error ε/L

d L/ε
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Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to L2([−1, 1]d) error ε?

Answer: It depends!

≤ poly(d) if L/ε = O(1)

≤ poly(L/ε) if d = O(1)

≥ exp(Ω(d)) if L/ε = Ω(
√
d)

d L/ε
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to L2([−1, 1]d) error ε?

Width Comments

Maiorov, ’99 ≥ exp(Ω(d)) L/ε → ∞

Yehudai & Shamir, ’19;
Kamath, Montasser, & Srebro, ’20 ≥ exp(Ω(d)) L/ε ≥ poly(d)

Andoni, Panigrahy, Valiant, & Zhang, ’14 ≤ dO(L/ε)2 exp activation

Bach, ’17;
Ji, Telgarsky, & Xian, ’19 ≤ (L/ε)O(d) L∞ approx
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Bach, ’17;
Ji, Telgarsky, & Xian, ’19 ≤ (L/ε)O(d) L∞ approx

Maiorov’s bound (for H1([−1, 1]d)) applies to networks with arbitrary bottom-level weights,
but only holds asymptotically as L/ε → ∞
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5 / 16



Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to L2([−1, 1]d) error ε?

Width Comments

Maiorov, ’99 ≥ exp(Ω(d)) L/ε → ∞

Yehudai & Shamir, ’19;
Kamath, Montasser, & Srebro, ’20 ≥ exp(Ω(d)) L/ε ≥ poly(d)

Andoni, Panigrahy, Valiant, & Zhang, ’14 ≤ dO(L/ε)2 exp activation

Bach, ’17;
Ji, Telgarsky, & Xian, ’19 ≤ (L/ε)O(d) L∞ approx

5 / 16



Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to L2([−1, 1]d) error ε?

Width Comments

Maiorov, ’99 ≥ exp(Ω(d)) L/ε → ∞

Yehudai & Shamir, ’19;
Kamath, Montasser, & Srebro, ’20 ≥ exp(Ω(d)) L/ε ≥ poly(d)

Andoni, Panigrahy, Valiant, & Zhang, ’14 ≤ dO(L/ε)2 exp activation

Bach, ’17;
Ji, Telgarsky, & Xian, ’19 ≤ (L/ε)O(d) L∞ approx

L∞ approximation is stronger than L2 approximation
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Width Comments
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Andoni, Panigrahy, Valiant, & Zhang, ’14 ≤ dO(L/ε)2 exp activation

Bach, ’17;
Ji, Telgarsky, & Xian, ’19 ≤ (L/ε)O(d) L∞ approx

Upshot: Prior work doesn’t reveal the correct minimum width for arbitrary d and L/ε
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Outline for rest of talk

1. Upper- and lower-bounds on the minimum width

2. Proof sketches

3. Some consequences
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Part 1. Upper- and lower-bounds on the minimum width

x1 x2

g(1)(x) g(2)(x) g(r)(x)

f(x)

xd

· · ·

· · ·



Our main results

MinWidthε,d,D(f⋆) := min

{
r ∈ N : Pr

[
inf

f̂∈Fr

∥f̂ − f⋆∥L2([−1,1]d) ≤ ε
]
≥ 0.9

}
smallest width r s.t. Fr (with bottom-level weights ∼ D) ε-approximates f⋆ with probability ≥ 90%

Qk,d := |{α ∈ Zd : ∥α∥2 ≤ k}| number of integer lattice points in radius k ball in Rd

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution D such that

sup
L-Lipschitz f⋆ : [−1, 1]d → R

MinWidthε,d,D(f⋆) ≤ Q
O(1)

2L/ε,d

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution D,

sup
L-Lipschitz f⋆ : [−1, 1]d → R

MinWidthε,d,D(f⋆) ≥ Ω(Q 1
18

L/ε,d)

Lower-bound, in fact, applies to any target-independent Fr (not just span of random ReLUs)
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Counting integer lattice points in a ball

Qk,d := |{α ∈ Zd : ∥α∥2 ≤ k}| number of integer lattice points in radius k Euclidean ball

Generalized Gauss Circle Problem: As k → ∞,

Qk,d = vol(Bd) · kd · (1 + o(1)) ≈ 1√
πd

(
2πek2

d

)d/2

· (1 + o(1))

But when d > k2, more favorable bounds via (simple) combinatorics:(
d

⌊k2⌋

)
≤ Qk,d ≤

(
k2 + 2d− 1

k2

)

=⇒ Qk,d = exp

(
Θ

(
min

(
d log

(
k2

d
+ 2

)
, k2 log

(
d

k2
+ 2

))))

Theorems 1 & 2 =⇒ sup
L-Lipschitz f⋆

MinWidthε,d,D(f⋆) =


poly(d) if L/ε = Θ(1)

poly(L/ε) if d = Θ(1)

exp(Θ(d)) if L/ε = Θ(
√
d)
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Part 2. Proof sketches



Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution D such that

sup
L-Lipschitz f⋆ : [−1, 1]d → R

MinWidthε,d,D(f⋆) ≤ Q
O(1)

2L/ε,d

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, ’14; Bresler & Nagaraj, ’20], with some
tweaks:

1. Get ε/2-approximation of L-Lipschitz f⋆ using orthonormal basis functions
√
2 sin(πα · x/2) and

√
2 cos(πα · x/2)

for α ∈ Zd with ∥α∥2 ≤ 2L/ε

2. Construct suitable parameter distribution D, so every trigonometric polynomial

p⋆ ∈ span
{
sin(πα · x), cos(πα · x) : α ∈ Zd, ∥α∥2 ≤ k

}
with bounded coefficients has

MinWidthε/2,d,D(p⋆) ≤ poly(d, k, 1/ε) ·QO(1)
k,d

Basis of “sinusoidal ridge functions” are especially convenient for this step
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with bounded coefficients has

MinWidthε/2,d,D(p⋆) ≤ poly(d, k, 1/ε) ·QO(1)
k,d

Basis of “sinusoidal ridge functions” are especially convenient for this step
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Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution D,

sup
L-Lipschitz f⋆ : [−1, 1]d → R

MinWidthε,d,D(f⋆) ≥ Ω(Q 1
18

L/ε,d)

We generalize a dimension argument of [Barron, ’93]:

1. If φ1, . . . , φN ∈ L2 are orthonormal with N ≥ r, then Fr is
√

1− r
N
-far from at least one φi

▶ Fr (or any dimension r subspace of L2) cannot approximate them all if r ≪ N

2. The N = Qk,d sinusoidal ridge functions (from upper-bound proof) are O(k)-Lipschitz

3. Combine these facts + scaling argument, with k = Θ(L/ε)

If Dweights is invariant to coordinate permutations, then the hard-to-approximate function is explicit:

x 7→ ε sin

(
π

ℓ∑
i=1

xi

)
, ℓ = min{Θ(d), Θ(L2/ε2)}
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Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal φ1, . . . , φN ∈ H. Let W be (possibly random)
finite-dimensional subspace of H with r := E[dim(W)] < ∞. Then there is some i ∈ [N ] such that

E
[
inf

g∈W
∥g − φi∥2H

]
≥ 1− r

N
.

Proof. Let u1, . . . ,ud be ONB for W, with d := dim(W), and let ΠW be orthoprojector for W.

1

N

N∑
i=1

E
[
inf

g∈W
∥g − φi∥2H

]
=

1

N

N∑
i=1

E
[
1− ∥ΠWφi∥2H

]

= 1− 1

N
E

[
N∑
i=1

∥ΠWφi∥2H

]

= 1− 1

N
E

[
N∑
i=1

d∑
k=1

⟨uk, φi⟩2H

]

≥ 1− 1

N
E

[
d∑

k=1

1

]
= 1− r

N
.
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Part 3. Some consequences



Depth separation

▶ Recent line-of-inquiry on separations between poly-size “shallow” nets and poly-size “deep” nets
[Telgarsky, ’16; Eldan & Shamir, ’16; Daniely, ’17; Safran & Shamir, ’17; Safran, Eldan, & Shamir, ’19; . . . ]

All known “hard” functions exhibiting the separation have been highly oscillatory or jagged

Telgarsky’s iterated tent map Oscillatory radial function

▶ [Safran, Eldan, & Shamir, ’19]: Is there a 1-Lipschitz function that separates poly(d)-size depth-2
nets from poly(d)-size depth-3 nets?

Our results ⇒ No, for constant L2 approximation error
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Hardness of learning with deeper networks

▶ “Hardness of approximation implies hardness of learning.” [Malach,

Yehudai, Shamir, & Shalev-Shwartz, ’21]

▶ Suppose no poly(d)-size three-layer neural network can weakly
approximate f . Then, no poly(d)-size NN of any depth and a
standard Xavier initialization will weakly learn f with poly(d) steps
of gradient descent.

▶ Proof idea:

▶ Initialized gradients are Lipschitz near initialization and can be
approximated using three-layer neural networks.

▶ Because f cannot be weakly approximated, gradients cannot
correlate strongly with f .

▶ poly(d) gradient steps are extremely small and remain near
initialization.
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approximate f . Then, no poly(d)-size NN of any depth and a
standard Xavier initialization will weakly learn f with poly(d) steps
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▶ Proof idea:
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approximated using two-layer neural networks. [Our upper bound]
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Lower-bounds for kernel methods

▶ Lower-bound applies to all methods that pick f̂ from a target-independent subspace of dimension r
— including kernel methods based on r = n examples (x(1), y(1)), . . . , (x(n), y(n)):

f̂ ∈ span
{
K(x(i), ·) : i = 1, . . . , n

}

Example: Lower-bound for learning parity functions under uniform distribution on {−1, 1}d with
non-adaptive membership queries (MQs) [Bubeck (after Allen-Zhu & Li), ’20]

▶ Why? Learnable — with noise! — using non-adaptive MQs in poly(d) time [e.g., Feldman, ’07]

(Learner allowed to choose x(1), . . . , x(n) ∈ {−1, 1}d, which subsequently get labels y(i)’s)

▶ Let φ1, . . . , φN be the N = 2d parity functions on {−1, 1}d, which is ONB for L2({−1, 1}d)
▶ Proposition [B/AZL, ’20]: Every kernel method, even if allowed non-adaptive MQs, needs

n ≥ (1− ε) · 2d

examples to guarantee mean squared error ≤ ε when any of the φi could be the true target

▶ Easy consequence of the key lemma!
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Recap and closing

1. Width needed to approximate L-Lipschitz functions up to L2([−1, 1]d) error ε:

sup
L-Lipschitz f⋆

MinWidthε,d,D(f⋆) = Q
Θ(1)

Θ(L/ε),d =


poly(d) if L/ε = Θ(1)

poly(L/ε) if d = Θ(1)

exp(Θ(d)) if L/ε = Θ(
√
d)

2. Sheds some light on other questions related to neural nets & kernel methods . . .

3. Also have results for Sobolev classes Hs for s ≥ 1 (see paper: arXiv:2102.02336)

Thank you!

We gratefully acknowledge support from the NSF (CCF-{1563155, 1703925, 1740833, 1763970, 1814873} and

IIS-{1563785, 1838154}), a Google Faculty Research Award, an Onassis Foundation Scholarship, a Sloan

Research Fellowship, and the Simons Collaboration on Algorithms and Geometry.
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