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Two-layer networks of random RelLUs (“random ReLU networks™)

f € Span{x — max{0, w'” .z —b}:ie [r}} , ((w(i),bm)): ~D

g(i)
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Approximating Lipschitz functions by two-layer networks of random RelLUs

Two-layer networks of random RelLUs:

= span{x — max{0, w'”) .z —b"}:ie [r]} , ((w(i)7 b(i)))f

i=1

~D7

g®

where D is probability distribution for bottom-level parameters (w”, b(V) € 7= x R
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Approximating Lipschitz functions by two-layer networks of random RelLUs

Two-layer networks of random RelLUs:

ND7

i=1

= span{;r — max{0, w'”) .z —b"}:ie [r]} , ((w(i),b(i)))f

g

where D is probability distribution for bottom-level parameters (w”, b(V) € 7= x R

Question:

What is the minimum width 7 s.t. F, can e-approximate any L-Lipschitz functions in £2([—1,1]%)
(with high probability)?

Pr[fienff If = Fllezqorney < s] >0.9 for all L-Lipschitz f*: [-1,1]* 5 R

_ = E x)2
11l 22 (1,174 \/xNUnif([fl,l]d)[f( )?]
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Approximating Lipschitz functions by two-layer networks of random RelLUs

Two-layer networks of random RelLUs:

Fr = span{;r — max{0, w'” .z — bW} :i e [r]} , ((w(i),b(i)))f ~ D,

i=1

g

where D is probability distribution for bottom-level parameters (w”, b(V) € 7= x R

Question:

What is the minimum width 7 s.t. F, can e-approximate any L-Lipschitz functions in £2([—1,1]%)
(with high probability)?

Pr[fienff If = Fllezqorney < s] >0.9 for all L-Lipschitz f*: [-1,1]* 5 R

Our work: upper- and lower-bounds on this minimum width, for all d, ¢, and L

_ = E x)2
11l 22 (1,174 \/xNUnif([fl,l]d)[f( )?]
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Motivations

1. Approximation capability of neural networks at (or near) IMPUSSIB[E"
random initialization

[Andoni, Panigrahy, Valiant, & Zhang, '14; Bach, '17;
Ji, Telgarsky, & Xian, '19; Yehudai & Shamir, '19; ...]
and kernel methods

[Aizerman, Braverman, Rozonoer, '64; Cho & Saul, '09; ...]
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Motivations

1. Approximation capability of neural networks at (or near) |MPUSSIﬁlE'
random initialization |

[Andoni, Panigrahy, Valiant, & Zhang, '14; Bach, '17;
Ji, Telgarsky, & Xian, '19; Yehudai & Shamir, '19; ...]
and kernel methods

[Aizerman, Braverman, Rozonoer, '64; Cho & Saul, '09; ...]

2. Interplay between dimension d and relative error /L
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Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?
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Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?
Answer: It depends!

poly(d) if L/e =0(1)
poly(L/e) ifd=0(1)
exp((d)) if L/e = Q(Vd)

IV A A
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Width

Comments

Maiorov, '99

> exp(Q(d))

L/e = o0

Yehudai & Shamir, '19;
Kamath, Montasser, & Srebro, '20

> exp(Q(d))

L/e > poly(d)

Andoni, Panigrahy, Valiant, & Zhang, '14

< dO(L/5)2

exp activation

Bach, '17;
Ji, Telgarsky, & Xian, '19

< (L/e)°

L approx
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Width Comments
Maiorov, '99 > exp(Q(d)) L/e — o0
Yehudai & Shamir, '19; > exp((d)) | LJe > poly(d)

Kamath, Montasser, & Srebro, '20

Andoni, Panigrahy, Valiant, & Zhang, '14 < dOL/e)? exp activation

Bach, '17; o) -
Ji, Telgarsky, & Xian, '19 < (L/e) L™ approx

Maiorov's bound (for H*([—1,1]%)) applies to networks with arbitrary bottom-level weights,
but only holds asymptotically as L/e — oo
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Width Comments
Maiorov, '99 > exp(Q(d)) L/e = o0
Yehudai & Shamir, '19; > exp((d)) | L/e > poly(d)

Kamath, Montasser, & Srebro, '20

Andoni, Panigrahy, Valiant, & Zhang, '14 < dOL/e)? exp activation

Bach, '17; o) -
Ji, Telgarsky, & Xian, '19 < (L/e) L™ approx

Hard function of YS and KMS has poly(d) Lipschitz constant
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Width

Comments

Maiorov, '99

> exp(Q(d))

L/e = o0

Yehudai & Shamir, '19;
Kamath, Montasser, & Srebro, '20

> exp(Q(d))

L/e > poly(d)

Andoni, Panigrahy, Valiant, & Zhang, '14

< dO(L/5)2

exp activation

Bach, '17;
Ji, Telgarsky, & Xian, '19

< (L/e)

L% approx

L approximation is stronger than £? approximation
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Width Comments
Maiorov, '99 > exp(Q(d)) L/e = o0
v . o
‘ehudai & Shamir, '19; > exp((d)) | LJe > poly(d)

Kamath, Montasser, & Srebro, '20

Andoni, Panigrahy, Valiant, & Zhang, '14 < dOL/e)? exp activation

Bach, '17; o
! ! (d) oo
Ji, Telgarsky, & Xian, '19 < (L/e) L™ approx

Upshot: Prior work doesn't reveal the correct minimum width for arbitrary d and L/e
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Outline for rest of talk

1. Upper- and lower-bounds on the minimum width
2. Proof sketches

3. Some consequences
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Part 1. Upper- and lower-bounds on the minimum width




Our main results

MinWidthe ¢ p(f*) = min{TEN : Pr[fin}f_ ||f‘—f*”£2([,171]d) < 6] 20.9}

7

smallest width r s.t. 7, (with bottom-level weights ~ D) e-approximates f* with probability > 90%
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MinWidthe ¢ p(f*) = min{?‘ eEN : Pr[Ainf ||f—f*‘|£2([,1!1]d) < 6] > 0.9}
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smallest width r s.t. 7, (with bottom-level weights ~ D) e-approximates f* with probability > 90%
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Our main results

MinWidthe ¢ p(f*) = min{?‘ eEN : Pr[Ainf If— Fllezqe1,9) < z’:‘] > 0.9}
ferFr
smallest width r s.t. 7, (with bottom-level weights ~ D) e-approximates f* with probability > 90%

Qr,a = {a €Z%:||all2 <k} number of integer lattice points in radius k ball in R?

Theorem 1 (upper bound). For any L,e,d, there exists a parameter distribution D such that

sup MinWidth. 4 p(f*) < Q51

2L /e,d
L-Lipschitz f*: [—-1,1]% - R
Theorem 2 (lower bound). For any L, e, d, and parameter distribution D,

sup MinWidthsyd)'D(‘f*) > Q(Q%L/s,d)
L-Lipschitz f*: [=1,1]% — R 8

Lower-bound, in fact, applies to any target-independent F, (not just span of random ReLUs)
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Counting integer lattice points in a ball

Qra = [{a €Z%: ||all2 < k}| number of integer lattice points in radius k Euclidean ball
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Counting integer lattice points in a ball
Qra = {a€2Z%: |lalla <k}| number of integer lattice points in radius k Euclidean ball

Generalized Gauss Circle Problem: As k — oo,

Qr.a = vol(Bg) - k- (14 0(1))

Q
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Counting integer lattice points in a ball
Qra = {a€2Z%: |lalla <k}| number of integer lattice points in radius k Euclidean ball

Generalized Gauss Circle Problem: As k — oo,

_ d 1 omek?\Y?
Qua = vol(Ba) - K- (o) ~ = () 1 o)

But when d > k?, more favorable bounds via (simple) combinatorics:

d K +2d—1
(M)ng,d§< B )
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Qra = {a€2Z%: |lalla <k}| number of integer lattice points in radius k Euclidean ball

Generalized Gauss Circle Problem: As k — oo,

_ d 1 omek?\Y?
Qua = vol(Ba) - K- (o) ~ = () 1 o)

But when d > k2, more favorable bounds via (simple) combinatorics:

d E*+2d—1
(LkQJ) < Qka < < 2 >
) k? 9 d
= Qk,dZQXP(G(mln(dlog(g+2),k log(ﬁ+2)>))
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Counting integer lattice points in a ball
Qra = {a€2Z%: |lalla <k}| number of integer lattice points in radius k Euclidean ball

Generalized Gauss Circle Problem: As k — oo,

_ d 1 omek?\Y?
Qua = vol(Ba) - K- (o) ~ = () 1 o)

But when d > k2, more favorable bounds via (simple) combinatorics:

d kE*+2d—1
(LkQJ) < Qka < < 2 )
) k? 9 d
= Qk,d:exp(G(mm(dlog(g+2),k log(ﬁ+2)>))

poly(d) if L/e =0(1)
Theorems 1 & 2 —> sup  MinWidthe 4 p(f*) = ¢ poly(L/e) if d=0(1)
ftipsenitz 1 exp(©(d)) if L/e = ©(Vd)
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Part 2. Proof sketches




Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that

sup MinWidth. 4 p(f*) < Q5

2L/e,d
L-Lipschitz f*: [—-1,1]% - R
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Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that

sup MinWidth. 4 p(f*) < Q5

2L/e,d
L-Lipschitz f*: [—-1,1]% - R

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, '14; Bresler & Nagaraj, '20], with some
tweaks:
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2L/e,d
L-Lipschitz f*: [—-1,1]% - R

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, '14; Bresler & Nagaraj, '20], with some
tweaks:
1. Get e/2-approximation of L-Lipschitz f* using orthonormal basis functions

V2sin(ra - z/2) and V2cos(ma - x/2)

for a € Z% with |2 < 2L /e
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Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that
g 0 * o(1)
sup MinWidthe ap(f") < Qyp )z g

L-Lipschitz f*: [—-1,1]% - R

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, '14; Bresler & Nagaraj, '20], with some
tweaks:
1. Get e/2-approximation of L-Lipschitz f* using orthonormal basis functions

V2sin(ra - z/2) and V2cos(ma - x/2)

for a € Z% with |2 < 2L /e
2. Construct suitable parameter distribution D, so every trigonometric polynomial

p* € span{sin(woz -x), cos(ma-x) + a€Z |al: < k}
with bounded coefficients has

MinWidth. /2,40 (p*) < poly(d, k,1/¢) - Qg
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Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that

sup MinWidth. 4 p(f*) < Q5

2L/e,d
L-Lipschitz f*: [—-1,1]% - R

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, '14; Bresler & Nagaraj, '20], with some
tweaks:

1. Get e/2-approximation of L-Lipschitz f* using orthonormal basis functions
V2sin(ra - z/2) and V2cos(ma - x/2)
for a € Z% with |2 < 2L /e
2. Construct suitable parameter distribution D, so every trigonometric polynomial
p* € span{sin(woz -z, cos(ma-z) @ aeZ ol < k}
with bounded coefficients has
MinWidth. /2,40 (p*) < poly(d, k,1/¢) - Qg

Basis of “sinusoidal ridge functions” are especially convenient for this step
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Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ¢, d, and parameter distribution D,

sup MinWidth. 4,p(f*) > Q(Q%L/E’d)

L-Lipschitz f*: [-1,1]9 - R
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Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ¢, d, and parameter distribution D,

sup MinWidthe ¢ p(f*) > Q(Q%L/s,d)

L-Lipschitz f*: [-1,1]9 - R

We generalize a dimension argument of [Barron, '93]:
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We generalize a dimension argument of [Barron, '93]:
1. Ifo1,...,oNn € L* are orthonormal with N > r, then F, is /T — x-far from at least one ¢;
» F, (or any dimension r subspace of 112) cannot approximate them all if r < N
2. The N = Q,q sinusoidal ridge functions (from upper-bound proof) are O(k)-Lipschitz
3. Combine these facts + scaling argument, with k = ©(L/¢)
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Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ¢, d, and parameter distribution D,

sup Minwidthg’dyD(f*) > Q(QﬁL/E,d)

L-Lipschitz f*: [-1,1]9 - R

We generalize a dimension argument of [Barron, '93]:

1. Ifo1,...,oNn € L* are orthonormal with N > r, then F, is /T — x-far from at least one ¢;
» F, (or any dimension r subspace of 112) cannot approximate them all if r < N

2. The N = Q,q sinusoidal ridge functions (from upper-bound proof) are O(k)-Lipschitz

3. Combine these facts + scaling argument, with k = ©(L/¢)

If Dyeights is invariant to coordinate permutations, then the hard-to-approximate function is explicit:

¢
z — e sin <7TZ$»;>, ¢ =min{O(d), O(L*/e*)}

i=1
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Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal ¢1,...,on € H. Let W be (possibly random)
finite-dimensional subspace of H with r := E[dim(W)] < co. Then there is some i € [N] such that

E| inf g —@il%| > 1- —.
it o - ll] 2 1- %
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Part 3. Some consequences
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Depth separation

» Recent line-of-inquiry on separations between poly-size “shallow” nets and poly-size “deep” nets
[Telgarsky, '16; Eldan & Shamir, '16; Daniely, '17; Safran & Shamir, '17; Safran, Eldan, & Shamir, '19; ...]
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» [Safran, Eldan, & Shamir, '19]: Is there a 1-Lipschitz function that separates poly(d)-size depth-2
nets from poly(d)-size depth-3 nets?
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Depth separation

» Recent line-of-inquiry on separations between poly-size “shallow” nets and poly-size “deep” nets
[Telgarsky, '16; Eldan & Shamir, '16; Daniely, '17; Safran & Shamir, '17; Safran, Eldan, & Shamir, '19; ...]

All known “hard” functions exhibiting the separation have been highly oscillatory or jagged

Telgarsky's iterated tent map Oscillatory radial function

» [Safran, Eldan, & Shamir, '19]: Is there a 1-Lipschitz function that separates poly(d)-size depth-2
nets from poly(d)-size depth-3 nets?

Our results = No, for constant £? approximation error
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Hardness of learning with deeper networks

>

»

“Hardness of approximation implies hardness of learning.” [Malach,
Yehudai, Shamir, & Shalev-Shwartz, '21]

Suppose no poly(d)-size two-layer neural network can weakly
approximate f. Then, no poly(d)-size NN of any depth and a
standard Xavier initialization will weakly learn f with poly(d) steps
of gradient descent.

Proof idea:

» Initialized gradients are Lipschitz near initialization and can be
approximated using two-layer neural networks. [Our upper bound)]

» Because f cannot be weakly approximated, gradients cannot
correlate strongly with f.

» poly(d) gradient steps are extremely small and remain near
initialization.
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Lower-bounds for kernel methods
» Lower-bound applies to all methods that pick f from a target-independent subspace of dimension r
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> Let ¢1,...,on be the N = 27 parity functions on {—1,1}%, which is ONB for £2({—1,1}%)
» Proposition [B/AZL, '20]: Every kernel method, even if allowed non-adaptive MQs, needs

n > (1-g)-2°
examples to guarantee mean squared error < & when any of the (; could be the true target

» Easy consequence of the key lemmal
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Recap and closing

1. Width needed to approximate L-Lipschitz functions up to £%([—1,1]%) error &:

poly(d) if L/e =0(1)
sup  MinWidthe a,p(f") = Qg&)/sm = (poly(L/e) ifd=0(1)
frbipschitz 1 exp(©(d)) if L/e = ©(VA)
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Thank you!
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