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Motivating question: How do neural networks (NNs) provably
outperform linear models (e.g., kernel methods)?

» Universal approximation properties of NNs are well-known, but
these say little about what is learnable by gradient descent (GD).

» Under certain scalings, very wide NNs trained with GD converge to
the kernel ridge regression (KRR) predictor with respect to the
Neural Tangent Kernel (NTK). However, first-layer weights are
nearly fixed in the NTK regime.

» In practice, gradient descent learns “features” and adapts to
ow-dimensional structure present in the data.

» Understanding how NNs outperform linear models requires
understanding feature learning and going beyond NTK.

We prove the adaptability of certain two-layer NNs to low-dimensional
structure via feature learning.

Problem Setting

Data model

» Gaussian covariates. d-dimensional samples x ~ ~4, where
Yd = N(O, /d)

» Single-index model. y = £,((6*, x))
¢ ~ N(0,0%) is independent label noise.

» Information exponent of £,, which we denote by s € N, is the
index of the smallest non-zero Hermite coefficient of f,.

» Training data. ni.i.d. samples (x;, yi)ic[n.
Network architecture

» Depth-two width-N RelLU network with tied first-layer weights
f e S

fo(x) = TO((0, x)) = % _Nl cio(e:0,x) — by).

» Rectified Linear Unit (ReLU) activation: ¢ : z — max{0, z}.

» Frozen i.i.d. random biases and signs: b; ~ N (0, 72),
e; ~ Unif({£1}). (¢ and c are randomly initialized and trained.)

Training algorithm
» Projected gradient flow (PGF) on regularized empirical
loss:

¢, where ||6*]] = 1 and

Lo(c,0) = -3 — o)+ Al

n;_q

» For t € |0, Ty|, only optimize 6. Train (c, 8) jointly afterwards.
c(t)=—-1{t > To}V .L,(c,0),
A(t) = —V5" Ly(c, ).

» V5° ' is a spherical gradient that ensures that the (shared)
first-layer weight 0 remains on the unit sphere S~ 1.
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Population Loss Landscape

Population loss: L(c,0) = E(, ,[(y — f4(x))?] + Allc[|, where
y = £((0%, %)) + €.

Theorem (Critical points of L(c,0))

Under regularity assumptions on f,, for sufficiently small A > 0 and

N =3 ifVel(c,0) =0 and V5" L(c,0) =0, then (c,8) is either

1. Bad: m:= (0,0") =0 and c =0, or
2. Good: m € {#+1} and ¢ = argmin_L(c, ).

Key proof idea: Show that (projected) gradients depend only on m,
and the Hermite coefficients of activation ¢ and target link f,.

Recovery of §*

Can we recover the direction 6" in the first layer weights of our NN?

Theorem (Projected gradient flow recovers 6*)

IfX=0(1), N=06(5), and n = Q(max{d", d°7'}), then the following
holds with probability at least 0.49.

(O(T), 07 >1-0 (max {d,dﬂ) .

Proof intuition:

» Uniform convergence of the empirical loss landscape to its
population counterpart.

» Topological properties of L are inherited by L,. Critical points of L,
split into “bad” ones on the equator and “good” ones at the poles.

» With large sample size n, gradient flow escapes the equatorial region
(m =~ 0) and converges to stable critical points at poles (|m| ~ 1).
Larger information exponent s requires larger n to escape.

Fine-tuning for Improved Rates

Fine-tuning: After PGF terminates, draw n’ new samples and use
KRR to obtain ¢ with new regularization A\,: ¢ = argmin_L,(c,0(T)).

Theorem (PGF with fine-tuning converges to F.)

After completing PGF as above, fine-tuning with n' additional samples,
appropriate A,y and width N’ produces ¢ € RN’ satisfying

y d d* :
5 X _ 2 & 4 —
Jn/[ fc,@(T) F*Hvegd] < 0, (max{n7 " }> + (n/) B ) :
for = 517

Experimental Validation

» Validated theoretical results on synthetic f, with information
exponent s € {1,2,3}, width N = 100, and varying n and d.

» Larger s requires larger n to escape equator and achieve

(0%, 0(T))| ~ 1.
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Figure: Correlation |m| (top row) and excess risk ||F — F*||2, with final
ridge/fine-tuning step (bottom row) as a function of sample size n.

Conclusion and Future Work

» We analyze joint training of first and second layer weights (c, 8) via
uniform convergence of the empirical landscape.

» Because our NN learns the “feature” 6* of the single-index model, it
requires much smaller width N compared to methods that do not
perform feature learning (e.g., random features).

» Our sample complexity for recovering 6* is near-optimal since
n 2> d° is necessary for target link f, with information exponent s

using SGD (Ben-Arous et al., 2021).

» Q1. If first layer weights are not shared, will they all converge to
either the poles (|m| ~ 1) or the equator (|m| =~ 0)7

» Q2. Can we learn multi-index models
(Fi(x) = f.({07,x),..., (0% x))) with shallow neural networks?

» Q3. Differences between multi-pass GD and online SGD?
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