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Motivation
Motivating question: How do neural networks (NNs) provably
outperform linear models (e.g., kernel methods)?
▶ Universal approximation properties of NNs are well-known, but

these say little about what is learnable by gradient descent (GD).
▶ Under certain scalings, very wide NNs trained with GD converge to

the kernel ridge regression (KRR) predictor with respect to the
Neural Tangent Kernel (NTK). However, first-layer weights are
nearly fixed in the NTK regime.

▶ In practice, gradient descent learns “features” and adapts to
low-dimensional structure present in the data.

▶ Understanding how NNs outperform linear models requires
understanding feature learning and going beyond NTK.

We prove the adaptability of certain two-layer NNs to low-dimensional
structure via feature learning.

Problem Setting

Data model
▶ Gaussian covariates. d -dimensional samples x ∼ γd , where

γd = N (0, Id).
▶ Single-index model. y = f∗(⟨θ∗, x⟩) + ξ, where ∥θ∗∥ = 1 and

ξ ∼ N (0, σ2) is independent label noise.
▶ Information exponent of f∗, which we denote by s ∈ N, is the

index of the smallest non-zero Hermite coefficient of f∗.
▶ Training data. n i.i.d. samples (xi , yi)i∈[n].
Network architecture
▶ Depth-two width-N ReLU network with tied first-layer weights

θ ∈ Sd−1:

fc,θ(x) = cTΦ(⟨θ, x⟩) = 1√
N

N∑
i=1

ciφ(εi⟨θ, x⟩ − bi).

▶ Rectified Linear Unit (ReLU) activation: φ : z 7→ max{0, z}.
▶ Frozen i.i.d. random biases and signs: bi ∼ N (0, τ 2),

εi ∼ Unif({±1}). (θ and c are randomly initialized and trained.)
Training algorithm
▶ Projected gradient flow (PGF) on regularized empirical

loss:
Ln(c, θ) = 1

n
n∑

i=1
(yi − fc,θ(xi))2 + λ∥c∥2.

▶ For t ∈ [0, T0], only optimize θ. Train (c, θ) jointly afterwards.
ċ(t) = −1{t > T0}∇cLn(c, θ),
θ̇(t) = −∇Sd−1

θ Ln(c, θ).
▶ ∇Sd−1

θ is a spherical gradient that ensures that the (shared)
first-layer weight θ remains on the unit sphere Sd−1.

Population Loss Landscape

Population loss: L(c, θ) = E(x ,y)[(y − fc,θ(x))2] + λ∥c∥2, where
y = f∗(⟨θ∗, x⟩) + ξ.
Theorem (Critical points of L(c, θ))

Under regularity assumptions on f∗, for sufficiently small λ > 0 and
N ≳ 1

λ, if ∇cL(c, θ) = 0 and ∇Sd−1
θ L(c, θ) = 0, then (c, θ) is either

1. Bad: m := ⟨θ, θ∗⟩ = 0 and c = 0; or
2. Good: m ∈ {±1} and c = arg minc L(c, θ).

Key proof idea: Show that (projected) gradients depend only on m,
and the Hermite coefficients of activation φ and target link f∗.

Recovery of θ∗

Can we recover the direction θ∗ in the first layer weights of our NN?
Theorem (Projected gradient flow recovers θ∗)

If λ = Θ(1), N = Θ(1
λ), and n = Ω(max{d s, d s+3

2 }), then the following
holds with probability at least 0.49.

|⟨θ(T ), θ∗⟩| ≥ 1 − Õ
max

d
n ,

d 4

n2


 .

Proof intuition:
▶ Uniform convergence of the empirical loss landscape to its

population counterpart.
▶ Topological properties of L are inherited by Ln. Critical points of Ln

split into “bad” ones on the equator and “good” ones at the poles.
▶ With large sample size n, gradient flow escapes the equatorial region

(m ≈ 0) and converges to stable critical points at poles (|m| ≈ 1).
Larger information exponent s requires larger n to escape.

Fine-tuning for Improved Rates

Fine-tuning: After PGF terminates, draw n′ new samples and use
KRR to obtain ĉ with new regularization λn′: ĉ = arg minc Ln′(c, θ(T )).
Theorem (PGF with fine-tuning converges to F∗)

After completing PGF as above, fine-tuning with n′ additional samples,
appropriate λn′ and width N ′ produces ĉ ∈ RN ′ satisfying

En′[∥fĉ,θ(T ) − F∗∥2
γ⊗d] ≤ Õ

max
d

n ,
d 4

n2

 + (n′)− β
β+1

 ,

for β = 1−1/τ 2

3+1/τ 2.

Experimental Validation

▶ Validated theoretical results on synthetic f∗ with information
exponent s ∈ {1, 2, 3}, width N = 100, and varying n and d .

▶ Larger s requires larger n to escape equator and achieve
|⟨θ∗, θ(T )⟩| ≈ 1.
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Figure: Correlation |m| (top row) and excess risk ∥F̂ − F ∗∥2
γd

with final
ridge/fine-tuning step (bottom row) as a function of sample size n.

Conclusion and Future Work
▶ We analyze joint training of first and second layer weights (c, θ) via

uniform convergence of the empirical landscape.
▶ Because our NN learns the “feature” θ∗ of the single-index model, it

requires much smaller width N compared to methods that do not
perform feature learning (e.g., random features).

▶ Our sample complexity for recovering θ∗ is near-optimal since
n ≳ d s is necessary for target link f∗ with information exponent s
using SGD (Ben-Arous et al., 2021).

▶ Q1. If first layer weights are not shared, will they all converge to
either the poles (|m| ≈ 1) or the equator (|m| ≈ 0)?

▶ Q2. Can we learn multi-index models
(F∗(x) = f∗(⟨θ∗

1, x⟩, . . . , ⟨θ∗
r , x⟩)) with shallow neural networks?

▶ Q3. Differences between multi-pass GD and online SGD?
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