
Why do over-parameterized
neural networks work?
An overview of benign overfitting
and inductive bias
Clayton Sanford

November 22, 2022

This talk
Neural Network Theory State Park

Central issue of deep learning theory

• Goal of ML theory:

• Rigorous mathematical understanding capabilities and limitations of ML
algorithms, which translate to practical recommendations for practitioners.

• Problem:

• ML theory is too pessimistic for deep learning; lack of theoretical
explanations for neural networks’ practical success.

• Two conflicting narratives for what makes ML models succeed: classical
ML theory vs modern deep learning practice.

Supervised learning setting

• Given samples

• Want to learn such is small for new

• for classification, for regression.

• How? Find minimizing training error: . 

 

(x1, y1), …, (xn, yn) ∼ 𝒟 .

h : ℝd → 𝒴 R(h) = 𝔼[ℓ(h(x), y)] (x, y) ∼ 𝒟 .

𝒴 = {±1} 𝒴 = ℝ

h ∈ ℋ R̂(h) =
1
n

n

∑
i=1

ℓ(h(xi), yi)

R(h)
⏟

population error

= R̂(h)
⏟

training error

+ R(h) − R̂(h)

generalization error

Supervised learning setting

• Given samples

• Want to learn such is small for new

• for classification, for regression.

• How? Find minimizing training error: . 

 

(x1, y1), …, (xn, yn) ∼ 𝒟 .

h : ℝd → 𝒴 R(h) = 𝔼[ℓ(h(x), y)] (x, y) ∼ 𝒟 .

𝒴 = {±1} 𝒴 = ℝ

h ∈ ℋ R̂(h) =
1
n

n

∑
i=1

ℓ(h(xi), yi)

R(h)
⏟

population error

= min
h̃∈h

R̂(h̃)

approximation error

+ R̂(h) − min
h̃∈h

R̂(h̃)

optimization error

+ R(h) − R̂(h)

generalization error

Classical ML Deep Learning

Approximation
Limited capacity models Universal approximation

Optimization
Convex optimization and/or  

poly-time algorithms
Non-convex optimization

No guarantees

Generalization
Capacity-based “Benign overfitting”

Narrative #1: Classical Theory

• ML textbook trade-offs: greater model complexity requires more samples

• Delicate balance between overfitting (high generalization error) and
over-simplification (high training error)

R(h) − R̂(h)
R̂(h)

Population

Error

Training

Error

Error

Model Complexity

Narrative #1: Classical Theory

Unexpressive Model

• ML textbook trade-offs: greater model complexity requires more samples

• Delicate balance between overfitting (high generalization error) and
over-simplification (high training error)

R(h) − R̂(h)
R̂(h)

Population

Error

Training

Error

Error

p (Number of Parameters/
Model Complexity)

• is too small

• Bad training error

• Good generalization error

p

 
(Inputs)

x

 
(Labels)

y

Narrative #1: Classical Theory

Appropriately Expressive Model

• ML textbook trade-offs: greater model complexity requires more samples

• Delicate balance between overfitting (high generalization error) and
over-simplification (high training error)

R(h) − R̂(h)
R̂(h)

Population

Error

Training

Error

Error

p (Number of Parameters/
Model Complexity)

• is at the “sweet spot”

• Good training error

• Good generalization error

p

 
(Labels)

y

 
(Inputs)

x

Narrative #1: Classical Theory

Too Expressive Model

• ML textbook trade-offs: greater model complexity requires more samples

• Delicate balance between overfitting (high generalization error) and
over-simplification (high training error)

R(h) − R̂(h)
R̂(h)

Population

Error

Training

Error

Error

p (Number of Parameters/
Model Complexity)

 
(Labels)

y

 
(Inputs)

x

• is too large

• Good training error

• Bad generalization error

• Overfitting

p

Narrative #1: Classical Theory
• Made rigorous with measurements of model complexity, like

VC-dimension, Rademacher complexity, fat-shattering
dimension.

• VC-dimension measures ability of hypotheses in to
correctly classify different labelings .

• Generalization bound based on VC-dimension:

• for all .

• Example: Linear classification

• .

• for all .

ℋ
yi

R(h) − R̂(h) = O(VC(ℋ)/n) h ∈ ℋ

VC(ℋ) = d + 1

R(h) − R̂(h) = O(d/n) h ∈ ℋ

Population

Error

Training

Error

Error

Model Complexity

Narrative #2: Deep Learning Practice

• Past decade: empirical dominance of deep learning
over other ML models

• How to train a neural network:

• Initialize a very large model (# params > # samples)

• Train with gradient descent until convergence to
very small training error

• Necessary tips & tricks: dropout, Adam, batch size,
regularization, specialized architectures, choice of
loss function, etc.

Clash between narratives

Unprincipled alchemy!

Irrelevant theory!

Clash between narratives
An example

• CoAtNet: current (as of May 2022) holder of
SOTA for ImageNet image classification
(ignoring ensemble models)

• Achieves 86.09% accuracy on 1000-class
classification by a NN with 168M parameters
and 13M training samples.

• VC dimension of NNs with fixed depth and
parameters is [Bartlett, et al ’98].

• Generalization bound is vacuous:
.

w
Θ(w log w)

R(h) − R̂(h) = Õ(w/n)

Can they be reconciled?

• Goal: a theory of benign overfitting that mathematically
describes why some overfitting models generalize.

• Challenge: It’s mathematically very difficult to say things
about neural networks

Can they be reconciled? (ctd)

Realistic

Generality/
Rigor

Deep learning SOTA

Empirical ML (e.g. lottery ticket
hypothesis, neural collapse)

Proofs about simple NNs (e.g. 2-layer NN, NTK)

Proofs about other models with common properties
(e.g. over-parameterized linear regression)

Learning theory proofs, removed from deep learning
(e.g. learning halfspaces)

Benign overfitting and double-descent
Benign Overfitting Double Descent

Model generalizes despite over-
parameterization and very small training error

Increasing model complexity beyond initial
point of overfitting causes second descent of
generalization error

Two Vignettes

1. Benign overfitting in linear
models:  
simplicity via minimum-norm
interpolation

2. Benign overfitting in 2-layer
neural nets:  
simplicity via adaptivity to low
dimensions

Two Vignettes

1. Benign overfitting in linear
models:  
simplicity via minimum-norm
interpolation

2. Benign overfitting in 2-layer
neural nets:  
simplicity via adaptivity to low
dimensions

Where can you find benign overfitting?

• Least-squares regression [BHX19, BLLT19, HMRT19, Mitra19, MVSS19]

• Ridge regression [TB20]

• Kernel regression [RZ19, LRZ20]

• Support vector machines [MNSBHS20, CL20, ASH20]

• Random feature models [MM19]

• Boosting [BFLS98]

Linear regression
• Sample . .

• Learn .

• Ordinary least-squares (OLS) (classical,):

• minimizes , or .

• Minimum-norm interpolation (interpolation,):

• minimizes such that , or .

• Classical generalization bound: [Audibert and Catoni,
’10]

(x1, y1), …, (xn, yn) ∈ ℝd × ℝ (X, y) ∈ ℝn×d × ℝn

x ↦ ̂θTx

n ≫ d

̂θ ∈ ℝd
n

∑
i=1

(̂θTxi − yi)2 ̂θ = X†y = (XTX)−1XTy

d ≫ n
̂θ ∈ ℝd ∥ ̂θ∥ ̂θTxi = yi

̂θ = X†y = X(XXT)−1Y

R(h) − R̂(h) ≤ O(d/n)

Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

• Analysis of when benign overfitting occurs for over-parameterized OLS .

• Special case: bi-level ensemble for :

• Subgaussian with independent components and diagonal covariance with
 and .

• Optimal weight , and subgaussian noise .

• Theorem: With probability 0.99:

• Proof by bias-variance decomposition and eigenvalue concentration bounds.

(d ≫ n)

k ≤ n

xi ∈ ℝd Λ
Λ1,1, …, Λk,k = 1 Λk+1,k+1, …, Λd,d = λ < n/d

θ* ∈ 𝕊d−1 σ

R(h) = O(k + λn
n

+ σ2(k
n

+
n
d))

Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

• and .

• Theorem: With probability 0.99:

• Benign overfitting occurs when…

• (small number of high-variance/“significant” features)

• (all other “noisy” features are relatively low-variance)

• (problem has much more parameters than necessary to fit)

Λ1,1, …, Λk,k = 1 Λk+1,k+1, …, Λd,d = λ < n/d

R(h) = O(k + λn
n

+ σ2(k
n

+
n
d))

k ≪ n

λ < n/d

n ≪ d

Hard SVM or maximum-margin classification

• Linearly separable
.

• Learn .

• minimizes such that
.

• is a support vector if .

• Classical generalization bounds rely on
bounding number of support vectors.

(x1, y1), …, (xn, yn) ∈ ℝd × {−1,1}

x ↦ sign(̂θTx)
̂θ ∈ ℝd ∥ ̂θ∥2

yi
̂θTxi ≥ 1

xi
̂θTxi = yi

SVM benign overfitting by connection to OLS
[MNSBHS20]
Exhibits benign overfitting for SVM linear classification of Gaussian data
with bi-level variances:

1. For certain distributions, over-parameterized OLS regression for
has benign overfitting. [BLLT19]

2. Then, “OLS classification” with and prediction rule
 also has benign overfitting.

3. Given dimension , same weights returned by OLS
classification and SVM: .

yi ∈ ℝ

yi ∈ {±1}
x ↦ sign(xTθOLS)

d = Ω(n3/2 log n)
θOLS = θSVM

• [MNSBHS20]

 

• [ASH21]

Tightening [MNSBHS20]…
Question: For what do we have SVM = OLS with high probability? d = d(n)

d

𝒩(0,Σ)
SVM = OLS

Cn log n

SVM OLS≠
Anisotropic Subgaussian

cn log n

𝒩(0,Id)𝒩(0,Id) 2n log n
SVM OLS≠ SVM = OLS{

Zooming out
Or: It’s 2022, who cares about SVMs or OLS??

• Benign overfitting isn’t only for neural nets!

• Gradient descent sometimes biased in favor of max-margin classifier

• Classification tasks with logistic loss function converge  

to the max margin solution [Soudry et al, ’17], [Ji & Telgarsky ’19]

• Wide two-layer neural nets with logistic loss function also converge to

max margin solutions [Chizat et al, ’20]

Two Vignettes

1. Benign overfitting in linear
models:  
simplicity via minimum-norm
interpolation

2. Benign overfitting in 2-layer
neural nets:  
simplicity via adaptivity to low
dimensions

Two-layer neural networks

•

• Parameters

• Rectified Linear Unit (ReLU):

• Train with gradient descent:

• , for training samples

• Non-convex!

f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj)

θ = (aj, bj, wj)j∈[m] ∈ (ℝ × ℝ × ℝd)m

ϕ(t) = max(0,t)

θ(t+1) = θ(t) − η∇R̂(θ(t))

R̂(θ) =
1
n

n

∑
i=1

ℓ(h(xi; θ), yi) n (xi, yi)i∈[n]

• Without data assumptions, doomed to require
 samples.

• This is known as curse of dimensionality.

• Wide neural nets can beat the curse of
dimensionality for regression. [Bach ’17]

• Adaptivity to smoothness and low dimensional
structure (data lies on a low dimensional
manifold).

• How do NNs achieve this?

exp(d)

Learning with Wide Neural Nets

[Parhi et al. ’22]

Two training regimes
 f(x; θ) =

m

∑
j=1

ajϕ(wT
j x + bj)

Kernel learning
(a.k.a. random feature model or neural tangent kernel)

• Bottom-layer weights () either fixed or remain
close to initialization

• Top-layer weights trained with gradient descent

• Convex optimization problem with known convergence
rate 🙂

wj, bj

Feature learning
• All weights are trained simultaneously

• Bottom-layer weights move a significant distance from
initialization to represent “features” that can be
combined

• Non-convex with poorly understood optimization
landscape 😬

Theoretical Benefits of Feature Learning
A toy problem [Damian, Lee, Soltanolkotobi ’22]

• Target function for degree- polynomial

• Non-adaptivity of kernel learning:

• Sample complexity

• Adaptivity of feature learning:

• Sample complexity

• Special learning algorithm:  
train bottom-layer for one step, train top-layer after

yi = f*(xi) q
f*(x) = p(uT

1 x, …, uT
r x)

n = Θ(dq)

n = O(d2r + drq)

Inductive biases + connections to benign overfitting

• Key idea: gradient descent with proper initializations is biased in favor of
intrinsically simple neural networks

• Recipe for understanding feature learning

1. Identify inductive biases that influence learning algorithm

2. Relate that inductive bias to generalization/adaptivity

Variational norm

Weight norm: , ,

1. Identify inductive biases that influence learning algorithm

• For large , gradient descent converges to  
[Bach & Chizat, ’21]

2. Relate that inductive bias to generalization/adaptivity

• If target has for all , then sample complexity  
[Parhi & Nowak, ’22]

∥f(⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

m arg min
θ

R̂(θ) + λ∥f(⋅ ; θ)∥ℛ

f* ∥f*∥ℛ ≤ B d Õ(n− d + 3
2d + 3)

Variational norm (ctd.)
Weight norm: , ,

Question: How does for behave?

A. Piecewise-linear interpolation for case:

Linear spline interpolation is one  
solution 
[Savarese et al ’19]

All solutions have linear splines when 
“local convexity” changes 
[Hanin ’21]

∥f(⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

f(⋅ ; θ) θ = arg min
θ

R̂(θ) + λ∥f(⋅ ; θ)∥ℛ

d = 1

[Savarese ’19]

Variational norm (ctd.)
Weight norm: , ,

Question: How does for behave?

B. Radon transform minimization for general case:

Exact characterization of norm in terms 
of Radon transform of Laplacian: 
  
[Ongie et al, ’19]

… but doesn’t tell us about interpolation solution

∥f(⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

f(⋅ ; θ) θ = arg min
θ

R̂(θ) + λ∥f(⋅ ; θ)∥ℛ

d

∥f∥ℛ = ∥ℛ(Δd + 1
2 f)∥𝕃1(𝕊d−1×[−c0,c0])

Variational norm (ctd.)
Weight norm: , ,

Question: How does for behave?

C. Inductive bias can favor averaging-based solutions over projections:

Even if data are intrinsically 1-dimensional, may not be.

For parity dataset , for , averages together
partial solutions rather than learning 1-d projection. 
[Sanford, Ardeshir, Hsu ‘22]

∥f(⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

f(⋅ ; θ) θ = arg min
θ

R̂(θ) + λ∥f(⋅ ; θ)∥ℛ

f(⋅ ; θ)

(x, x1x2…xd) x ∈ {±1}d f(⋅ ; θ)

1⊤x

Recap

• Classical ML theory fails to explain benign overfitting in neural networks

• Benign overfitting can be analyzed more cleanly in simpler linear models and
connected to certain kinds of “simplicity” enabled by a plethora of parameters

• While more difficult to study in neural networks, can consider simplicities that
gradient descent is biased towards (e.g. variational norm) and connect to
generalization (e.g. dimension adaptivity)

• These notions of simplicity are all intrinsically-linked in various ways (low
intrinsic dimensionality, Radon transform, weight norm minimization, spline
interpolation, averaging)… future questions involve connecting them.

Thank you

