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Central issue of deep learning theory

 Goal of ML theory:

* Rigorous mathematical understanding capabilities and limitations of ML
algorithms, which translate to practical recommendations for practitioners.

e Problem:

ML theory is too pessimistic for deep learning; lack of theoretical
explanations for neural networks’ practical success.

* Two conflicting narratives for what makes ML models succeed: classical
ML theory vs modern deep learning practice.



Supervised learning setting

» Given samples (x{, V1), ..., (X, y,) ~ .

. Want to learn 4 : RY — % such R(h) = E[£(h(x),y)] is small for new (x,y) ~ D .

» Y = {*1} for classification, % = R for regression.
A |
How? Find i € # minimizing training error: R(h) = — Z £ (h(x;),y)).
n
i=1
R(h) = R(h) + R(h)—RMh)
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Classical ML

Deep Learning

Approximation
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Narrative #1: Classical Theory
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Model Complexity

ML textbook trade-offs: greater model complexity requires more samples

» Delicate balance between overfitting (high generalization error R(h) — ﬁ(h)) and
over-simplification (high training error R(h))
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Narrative #1: Classical Theory
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* Bad training error
 (Good generalization error
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Unexpressive Model

ML textbook trade-offs: greater model complexity requires more samples

(Inputs)

» Delicate balance between overfitting (high generalization error R(h) — IAQ(h)) and

over-simplification (high training error R(h))



Narrative #1: Classical Theory

Error ) e p is at the “sweet spot”
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Appropriately Expressive Model (nputs)

ML textbook trade-offs: greater model complexity requires more samples

» Delicate balance between overfitting (high generalization error R(h) — IAQ(h)) and
over-simplification (high training error R(h))



Narrative #1: Classical Theory
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ML textbook trade-offs: greater model complexity requires more samples

» Delicate balance between overfitting (high generalization error R(h) — ﬁ(h)) and
over-simplification (high training error R(h))

Too Expressive Model (Inputs):



Narrative #1: Classical Theory

 Made rigorous with measurements of model complexity, like

VC-dimension, Rademacher complexity, fat-shattering
dimension.

« VC-dimension measures ability of hypotheses in Z to
correctly classify different labelings y..

 (Generalization bound based on VC-dimension:

. R(h) — R(h) = OG/VC(F)In)forallh € .

 Example: Linear classification

s VO(Z)=d+ 1.

. RO — R(b) = O(/In) forall h € 7. -

Model Complexity



Narrative #2: Deep Learning Practice

 Past decade: empirical dominance of deep learning
over other ML models

 How to train a neural network:

* |nitialize a very large model (# params > # samples)

* [rain with gradient descent until convergence to
very small training error

 Necessary tips & tricks: dropout, Adam, batch size,

regularization, specialized architectures, choice of
loss function, etc.



Clash between narratives

Unprincipled alchemy!

Irrelevant theory!




Clash between narratives

An example

 CoAtNet: current (as of May 2022) holder of
SOTA for ImageNet image classification
ignoring ensemble models

* Achieves 86.09% accuracy on 1000-class
classification by a NN with 168M parameters
and 13M training samples.

 VC dimension of NNs with fixed depth and w
parameters is O(w log w) [Bartlett, et al "98].

e (Generalization bound is vacuous:

R(h) — R(h) = O(\/win).

arXiv:2106.04803v2 [cs.CV] 15 Sep 2021

CoAtNet: Marrying Convolution and Attention
for All Data Sizes

Zihang Dai, Hanxiao Liu, Quoc V. Le, Mingxing Tan
Google Research, Brain Team
{zihangd,hanxiaol,qvl,tanmingxing}@google.com

Abstract

Transformers have attracted increasing interests in computer vision, but they still
fall behind state-of-the-art convolutional networks. In this work, we show that
while Transformers tend to have larger model capacity, their generalization can be
worse than convolutional networks due to the lack of the right inductive bias. To
effectively combine the strengths from both architectures, we present CoAtNets
(pronounced “coat” nets), a family of hybrid models built from two key insights:
(1) depthwise Convolution and self-Attention can be naturally unified via simple
relative attention; (2) vertically stacking convolution layers and attention layers in
a principled way is surprisingly effective in improving generalization, capacity and
efficiency. Experiments show that our CoAtNets achieve state-of-the-art perfor-
mance under different resource constraints across various datasets: Without extra
data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with
13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy,
matching ViT-huge pre-trained with 300M images from JFT-300M while using
23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves
90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.

1 Introduction

Since the breakthrough of AlexNet [1], Convolutional Neural Networks (ConvNets) have been the
dominating model architecture for computer vision [2, 3, 4, 5]. Meanwhile, with the success of
self-attention models like Transformers [6] in natural language processing [7, £], many previous
works have attempted to bring in the power of attention into computer vision [9, 10, 11, 12]. More
recently, Vision Transformer (ViT) [13] has shown that with almost’ only vanilla Transformer layers,
one could obtain reasonable performance on ImageNet-1K [14] alone. More importantly, when
pre-trained on large-scale weakly labeled JFT-300M dataset [15], ViT achieves comparable results
to state-of-the-art (SOTA) ConvNets, indicating that Transformer models potentially have higher
capacity at scale than ConvNets.

While ViT has shown impressive results with enormous JFT 300M training images, its performance
still falls behind ConvNets in the low data regime. For example, without extra JFT-300M pre-training,
the ImageNet accuracy of ViT is still significantly lower than ConvNets with comparable model
size [5] (see Table 13). Subsequent works use special regularization and stronger data augmentation
to improve the vanilla ViT [16, 17, 18], yet none of these ViT variants could outperform the SOTA
convolution-only models on ImageNet classification given the same amount of data and computa-
tion [19, 20]. This suggests that vanilla Transformer layers may lack certain desirable inductive biases
possessed by ConvNets, and thus require significant amount of data and computational resource
to compensate. Not surprisingly, many recent works have been trying to incorporate the induc-
tive biases of ConvNets into Transformer models, by imposing local receptive fields for attention

! The initial projection stage can be seen as an aggressive down-sampling convolutional stem.




Can they be reconciled?

* Goal: a theory of benign overfitting that mathematically
describes why some overfitting models generalize.

* Challenge: It's mathematically very difficult to say things
about neural networks
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Can they be reconciled? (ctd)

Generality/
Rigor

Learning theory proofs, removed from deep learning
¥ (e.g. learning halfspaces)

Proofs about other models with common properties
'4 (e.g. over-parameterized linear regression)

/ Proofs about simple NNs (e.g. 2-layer NN, NTK)

Empirical ML (e.qg. lottery ticket
/ hypothesis, neural collapse)

/ Deep learning SOTA

Realistic



Benign overfitting and double-descent

Benign Overfitting Double Descent
Model generalizes despite over- Increasing model complexity beyond initial
parameterization and very small training error point of overfitting causes second descent of

generalization error
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Two Vignettes
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1. Benign overfitting In linear >
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Where can you find benign overfitting?

 Least-squares regression [BHX19, BLLT19, HMRT19, Mitra19, MVSS19]
* Ridge regression [TB20]

» Kernel regression [RZ19, LRZ20]

 Support vector machines [MNSBHS20, CL20, ASH20]

« Random feature models [MM19]

* Boosting [BFLS98]



Linear regression

» Sample (x;,¥),...,(x,,y,) € Ix R. (X,y) € R™ x R"

e Learnx — O x.

« Ordinary least-squares (OLS) (classical, n > d):

0 € R? minimizes Z (éTxi — yi)z, or 0 = X'y = XTX)"'XTy.
i=1

« Minimum-norm interpolation (interpolation, d > n):

. 0 € R minimizes H6A’H such that é’Txi =y, Or 0 = X'y = X(xXx")~y.

« Classical generalization bound: R(/) — IAQ(h) < O(W/d/n) [Audibert and Catoni,
'10]



Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

 Analysis of when benign overfitting occurs for over-parameterized OLS (d > n).
» Special case: bi-level ensemble for k < n:

» Subgaussian x; € R4 with independent components and diagonal covariance A with
Al,l’ ceeo Ak,k — 1 and Ak+1,k+1’ cees Ad,d — ﬂ < n/d

. Optimal weight 8% € S%!, and subgaussian noise o.

* Theorem: With probability 0.99:

R(h)=0<k+/ln I 02<k : n))
n n d

* Proof by bias-variance decomposition and eigenvalue concentration bounds.




Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

o Al,l’ ’Ak,k — 1 and Ak+1,k+1’ ’Ad,d — /1 < n/d

* Theorem: With probability 0.99:

R(h) = o(an +02(5+3)>
n n d

* Benign overfitting occurs when...

» k < n (small number of high-variance/“significant” features)
« A < n/d (all other “noisy” features are relatively low-variance)

e n < d (problem has much more parameters than necessary to fit)



Hard SVM or maximum-margin classification
/<5,x> =0

* Linearly separable o 6
d 6 ; !
(X1, V1)5 -5 (X, y,) € R X {—1,1}. e
e Learnx sign(é’Tx). ’
. 0 € I 4 minimizes H@Hz such that ) . 0
yleTXl Z 1 . o P o
: e nl .. __ ' .
» X, is a support vector if " x; = y.. o v
 Classical generalization bounds rely on n
bounding nhumber of support vectors. G- = G
N~



SVM benign overfitting by connection to OLS
IMNSBHS20]

Exhibits benign overfitting for SVM linear classification of Gaussian data
with bi-level variances:

1. For certain distributions, over-parameterized OLS regression for y: € |
has benign overfitting. [BLLT19]

2. Then, “OLS classification” with y, € {£ 1} and prediction rule
X - sign(xTHOLS) also has benign overfitting.

3. Given dimension d = Q(n>? log n), same weights returned by OLS
classification and SVM: 0,; ¢ = Ogy,-



Tightening [MNSBHS20]...

Question: For what d = d(n) do we have SVM = OLS with high probability?

« [MNSBHS20] SVM = OLS
N(0,%)
SVM # OLS
Anisotropic Subgaussian
« [ASH21]
SVM # OLS SVM = OLS
C———————————————————————————————————————————————
N (0,1;) 2nlogn (0,1,

Jd —m™—

cnlogn Cnlogn



Zooming out
Or: It’'s 2022, who cares about SVMs or OLS??

* Benign overfitting isn’t only for neural nets!

 (Gradient descent sometimes biased in favor of max-margin classifier

* C(Classification tasks with logistic loss function converge
to the max margin solution [Soudry et al, ’17], [Ji & Telgarsky '19]

 Wide two-layer neural nets with logistic loss function also converge to
max margin solutions [Chizat et al, ’20]
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Two-layer neural networks

[0 = ) agpw x+Db)

« Parameters 6 = (a b W ) Dicim) € (R X R x R9)™ 4
* Rectified Linear Unit (Rel.U). ¢ (t ) — maX(O [ ) , _« - ‘
+ Train with gradient descent: 8D = 9® — n VR(OD)

Hidden Output

A 1 N n
, R(O) =— Z £ (h(x;; 0),;), for n training samples (X;, y;);cn) P layer layer
n

e Non-convex!



Learning with Wide Neural Nets

 Without data assumptions, doomed to require

exp(d) samples.
* This is known as curse of dimensionality.

* Wide neural nets can beat the curse of
dimensionality for regression. [Bach '17]

* Adaptivity to smoothness and low dimensional [Parhi et al. *22]
structure (data lies on a low dimensional
manifold).

* How do NNs achieve this?



Two training regimes
fo5;0) = ) aipw/x +b)

j=1
Kernel learning Feature learning

(a.k.a. random feature model or neural tangent kernel)

* All weights are trained simultaneously

« Bottom-layer weights (wj, bj) either fixed or remain
close to initialization  Bottom-layer weights move a significant distance from
initialization to represent “features” that can be

* Top-layer weights trained with gradient descent combined

* Non-convex with poorly understood optimization

 (Convex optimization problem with known convergence
landscape

rate (&

Deep Learning learns layers of features
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A toy problem [Damian, Lee, Soltanolkotobi ’22]

» Target function y; = f*(x;) for degree-g polynomial
f*(x) = pQu; x, ..., u; x)

1.2

Theoretical Benefits of Feature Learning

Width m = 1000

* Non-adaptivity of kernel learning: 10
« Sample complexity n = O(d?) o0

« Adaptivity of feature learning: 02

0.0

. Sample complexity n = O(d*r + dr9)

e Special learning algorithm:;
train bottom-layer for one step, train top-layer after



Inductive biases + connections to benign overfitting

 Key idea: gradient descent with proper initializations is biased in favor of
intrinsically simple neural networks

* Recipe for understanding feature learning
1. ldentify inductive biases that influence learning algorithm

2. Relate that inductive bias to generalization/adaptivity



Variational norm

m m

Weight norm: [I(- 3 O)llz = ), la;l, f;0) = ) aipw/x+ by, lwill = 1.

j=1 j=1

1. Identify inductive biases that influence learning algorithm

. For large m, gradient descent converges to arg min IA€(6’) + AlfC- 50| 5
0
[Bach & Chizat, ’21]

2. Relate that inductive bias to generalization/adaptivity

d+3

. If target f* has ||f*|| , < B for all d, then sample complexity O(n ~24+3)
[Parhi & Nowak, '22]




Variational norm (ctd.)

m

Weight norm: [If( 3 O)lle = . la;l, f(x:0) = Y apwlx +b), [lwjll = 1.

j=1 j=1

Question: How does f( - ; 6) for @ = arg min R(0) + A||f( - ; 0)|| 5 behave?
0

A. Piecewise-linear interpolation for d = | case:

%

Linear spline interpolation is one
solution
[Savarese et al '19]

All solutions have linear splines when

“local convexity” changes
[Hanin '21]

R(hg) =4.35)[C(6) = 3.28

L

T T

(R(hg) = 4.35| (C(9) = 3.48)

L

AVAN

‘R(hg) =4.35][C(6) = 3.93]

3 layers, 100 units

4 layers, 100 units

[Savarese ’19]

5 layers, '1 00 units




Variational norm (ctd.)

Weight norm: [If( -3 D)llz = ) la; |, f;0) = )’ aipw]x + b, lIwll = 1,
j=1

j=1

Question: How does f( - ; 0) for @ = arg min R(O) + 4| (-5 0|l » behave?
0

B. Radon transform minimization for general d case:

Exact characterization of norm In terms

of Radon transforrr; 01f Laplacian: w'z =b
T w
11l = 1 FAT Dl -aen)
[Ongie et al, ’19] = A\
. f(z)
... but doesn’t tell us about interpolation

+0

6 s.t. w=|[cos(#),sin(f)]



Variational norm (ctd.)

Weight norm: [I(+ 1)l = D" lal, f:0) = Y ahw!x + b)), flw,ll = 1.

j=1 j=1

Question: How does f( - ; 0) for @ = arg min R(O) + 4| (-5 0|l » behave?
0

C. Inductive bias can favor averaging-based solutions over projections:

Even if data are intrinsically 1-dimensional, f( - ; &) may not be.

For parity dataset (x, xx,...x,), forx € {*1 Y4 f( - ; 6) averages together
partial solutions rather than learning 1-d projection.
[Sanford, Ardeshir, Hsu ‘22] -
3\ o a \/4/5 1'x




Recap

» Classical ML theory fails to explain benign overfitting in neural networks

* Benign overfitting can be analyzed more cleanly in simpler linear models and
connected to certain Kinds of “simplicity” enabled by a plethora of parameters

* While more difficult to study in neural networks, can consider simplicities that
gradient descent is biased towards (e.g. variational norm) and connect to
generalization (e.g. dimension adaptivity)

* These notions of simplicity are all intrinsically-linked in various ways (low
intrinsic dimensionality, Radon transform, weight norm minimization, spline
interpolation, averaging)... future questions involve connecting them.






