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Central issue of deep learning theory

• Goal of ML theory: 


• Rigorous mathematical understanding capabilities and limitations of ML 
algorithms, which translate to practical recommendations for practitioners.


• Problem: 


• ML theory is too pessimistic for deep learning; lack of theoretical 
explanations for neural networks’ practical success.


• Two conflicting narratives for what makes ML models succeed: classical 
ML theory vs modern deep learning practice.



Supervised learning setting

• Given samples 


• Want to learn  such  is small for new 


•  for classification,  for regression.


• How? Find  minimizing training error: . 

 
                  

(x1, y1), …, (xn, yn) ∼ 𝒟 .

h : ℝd → 𝒴 R(h) = 𝔼[ℓ(h(x), y)] (x, y) ∼ 𝒟 .

𝒴 = {±1} 𝒴 = ℝ

h ∈ ℋ R̂(h) =
1
n

n

∑
i=1

ℓ(h(xi), yi)

R(h)
⏟

population error

= R̂(h)
⏟

training error

+ R(h) − R̂(h)

generalization error
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Classical ML Deep Learning

Approximation
Limited capacity models Universal approximation

Optimization
Convex optimization and/or  

poly-time algorithms
Non-convex optimization


No guarantees

Generalization
Capacity-based “Benign overfitting”



Narrative #1: Classical Theory

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)

Population 

Error

Training

Error

Error

Model Complexity




Narrative #1: Classical Theory

Unexpressive Model

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)

Population 

Error

Training

Error

Error

p (Number of Parameters/ 
Model Complexity) 

•  is too small

• Bad training error

• Good generalization error

p

 
(Inputs)

x

 
(Labels)

y



Narrative #1: Classical Theory

Appropriately Expressive Model

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)

Population 

Error

Training

Error

Error

p (Number of Parameters/ 
Model Complexity)


•  is at the “sweet spot”

• Good training error

• Good generalization error


p

 
(Labels)

y

 
(Inputs)

x



Narrative #1: Classical Theory

Too Expressive Model

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)

Population 

Error

Training

Error

Error

p (Number of Parameters/ 
Model Complexity) 

 
(Labels)

y

 
(Inputs)

x

•  is too large

• Good training error

• Bad generalization error

• Overfitting


p



Narrative #1: Classical Theory
• Made rigorous with measurements of model complexity, like 

VC-dimension, Rademacher complexity, fat-shattering 
dimension.


• VC-dimension measures ability of hypotheses in  to 
correctly classify different labelings . 


• Generalization bound based on VC-dimension: 


•  for all .


• Example: Linear classification


• .


•   for all .

ℋ
yi

R(h) − R̂(h) = O( VC(ℋ)/n) h ∈ ℋ

VC(ℋ) = d + 1

R(h) − R̂(h) = O( d/n) h ∈ ℋ

Population 

Error

Training

Error

Error

Model Complexity




Narrative #2: Deep Learning Practice

• Past decade: empirical dominance of deep learning 
over other ML models


• How to train a neural network:  

• Initialize a very large model (# params > # samples)


• Train with gradient descent until convergence to 
very small training error


• Necessary tips & tricks: dropout, Adam, batch size, 
regularization, specialized architectures, choice of 
loss function, etc.



Clash between narratives

Unprincipled alchemy!

Irrelevant theory!



Clash between narratives
An example

• CoAtNet: current (as of May 2022) holder of 
SOTA for ImageNet image classification 
(ignoring ensemble models)


• Achieves 86.09% accuracy on 1000-class 
classification by a NN with 168M parameters 
and 13M training samples.


• VC dimension of NNs with fixed depth and  
parameters is  [Bartlett, et al ’98].


• Generalization bound is vacuous: 
.

w
Θ(w log w)

R(h) − R̂(h) = Õ( w/n)



Can they be reconciled?

• Goal: a theory of benign overfitting that mathematically 
describes why some overfitting models generalize.


• Challenge: It’s mathematically very difficult to say things 
about neural networks



Can they be reconciled? (ctd)

Realistic

Generality/
Rigor

Deep learning SOTA

Empirical ML (e.g. lottery ticket 
hypothesis, neural collapse)

Proofs about simple NNs (e.g. 2-layer NN, NTK)

Proofs about other models with common properties 
(e.g. over-parameterized linear regression)

Learning theory proofs, removed from deep learning 
(e.g. learning halfspaces)



Benign overfitting and double-descent
Benign Overfitting Double Descent

Model generalizes despite over-
parameterization and very small training error

Increasing model complexity beyond initial 
point of overfitting causes second descent of 
generalization error



Two Vignettes

1. Benign overfitting in linear 
models:  
simplicity via minimum-norm 
interpolation


2. Benign overfitting in 2-layer 
neural nets:  
simplicity via adaptivity to low 
dimensions 
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Where can you find benign overfitting?

• Least-squares regression [BHX19, BLLT19, HMRT19, Mitra19, MVSS19]


• Ridge regression [TB20]


• Kernel regression [RZ19, LRZ20]


• Support vector machines [MNSBHS20, CL20, ASH20]


• Random feature models [MM19]


• Boosting [BFLS98]



Linear regression
• Sample . .


• Learn .


• Ordinary least-squares (OLS) (classical, ): 


•  minimizes , or .


• Minimum-norm interpolation (interpolation, ):


•  minimizes  such that , or .


• Classical generalization bound:  [Audibert and Catoni, 
’10]

(x1, y1), …, (xn, yn) ∈ ℝd × ℝ (X, y) ∈ ℝn×d × ℝn

x ↦ ̂θTx

n ≫ d

̂θ ∈ ℝd
n

∑
i=1

( ̂θTxi − yi)2 ̂θ = X†y = (XTX)−1XTy

d ≫ n
̂θ ∈ ℝd ∥ ̂θ∥ ̂θTxi = yi

̂θ = X†y = X(XXT)−1Y

R(h) − R̂(h) ≤ O( d/n)



Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

• Analysis of when benign overfitting occurs for over-parameterized OLS .


• Special case: bi-level ensemble for : 

• Subgaussian  with independent components and diagonal covariance  with 
 and .


• Optimal weight , and subgaussian noise .


• Theorem: With probability 0.99:


  


• Proof by bias-variance decomposition and eigenvalue concentration bounds.

(d ≫ n)

k ≤ n

xi ∈ ℝd Λ
Λ1,1, …, Λk,k = 1 Λk+1,k+1, …, Λd,d = λ < n/d

θ* ∈ 𝕊d−1 σ

R(h) = O(k + λn
n

+ σ2( k
n

+
n
d ))



Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

•  and .


• Theorem: With probability 0.99:


  


• Benign overfitting occurs when…


•  (small number of high-variance/“significant” features)


•  (all other “noisy” features are relatively low-variance) 


•  (problem has much more parameters than necessary to fit)

Λ1,1, …, Λk,k = 1 Λk+1,k+1, …, Λd,d = λ < n/d

R(h) = O(k + λn
n

+ σ2( k
n

+
n
d ))

k ≪ n

λ < n/d

n ≪ d



Hard SVM or maximum-margin classification

• Linearly separable 
.


• Learn .


•  minimizes  such that 
.


•  is a support vector if .


• Classical generalization bounds rely on 
bounding number of support vectors.

(x1, y1), …, (xn, yn) ∈ ℝd × {−1,1}

x ↦ sign( ̂θTx)
̂θ ∈ ℝd ∥ ̂θ∥2

yi
̂θTxi ≥ 1

xi
̂θTxi = yi



SVM benign overfitting by connection to OLS
[MNSBHS20]
Exhibits benign overfitting for SVM linear classification of Gaussian data 
with bi-level variances:


1. For certain distributions, over-parameterized OLS regression for  
has benign overfitting. [BLLT19]


2. Then, “OLS classification” with  and prediction rule 
 also has benign overfitting.


3. Given dimension , same weights returned by OLS 
classification and SVM: .

yi ∈ ℝ

yi ∈ {±1}
x ↦ sign(xTθOLS)

d = Ω(n3/2 log n)
θOLS = θSVM



• [MNSBHS20] 

 

• [ASH21]

Tightening [MNSBHS20]…
Question: For what  do we have SVM = OLS with high probability? d = d(n)

d

𝒩(0,Σ)
SVM = OLS

Cn log n

SVM  OLS≠
Anisotropic Subgaussian

cn log n

𝒩(0,Id)𝒩(0,Id) 2n log n
SVM  OLS≠ SVM = OLS{



Zooming out
Or: It’s 2022, who cares about SVMs or OLS??

• Benign overfitting isn’t only for neural nets!


• Gradient descent sometimes biased in favor of max-margin classifier

• Classification tasks with logistic loss function converge  

to the max margin solution [Soudry et al, ’17], [Ji & Telgarsky ’19] 

• Wide two-layer neural nets with logistic loss function also converge to 

max margin solutions [Chizat et al, ’20]



Two Vignettes

1. Benign overfitting in linear 
models:  
simplicity via minimum-norm 
interpolation


2. Benign overfitting in 2-layer 
neural nets:  
simplicity via adaptivity to low 
dimensions 



Two-layer neural networks

•  


• Parameters 


• Rectified Linear Unit (ReLU): 


• Train with gradient descent: 


• , for  training samples 


• Non-convex!

f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj)

θ = (aj, bj, wj)j∈[m] ∈ (ℝ × ℝ × ℝd)m

ϕ(t) = max(0,t)

θ(t+1) = θ(t) − η∇R̂(θ(t))

R̂(θ) =
1
n

n

∑
i=1

ℓ(h(xi; θ), yi) n (xi, yi)i∈[n]



• Without data assumptions, doomed to require 
 samples.


• This is known as curse of dimensionality.


• Wide neural nets can beat the curse of 
dimensionality for regression. [Bach ’17]


• Adaptivity to smoothness and low dimensional 
structure (data lies on a low dimensional 
manifold).


• How do NNs achieve this?

exp(d)

Learning with Wide Neural Nets

[Parhi et al. ’22]



Two training regimes
 f(x; θ) =

m

∑
j=1

ajϕ(wT
j x + bj)

Kernel learning  
(a.k.a. random feature model or neural tangent kernel)


• Bottom-layer weights ( ) either fixed or remain 
close to initialization


• Top-layer weights trained with gradient descent


• Convex optimization problem with known convergence 
rate 🙂 

wj, bj

Feature learning 
• All weights are trained simultaneously


• Bottom-layer weights move a significant distance from 
initialization to represent “features” that can be 
combined


• Non-convex with poorly understood optimization 
landscape 😬



Theoretical Benefits of Feature Learning
A toy problem [Damian, Lee, Soltanolkotobi ’22]

• Target function  for degree-  polynomial 



• Non-adaptivity of kernel learning:


• Sample complexity 


• Adaptivity of feature learning:


• Sample complexity 


• Special learning algorithm:  
train bottom-layer for one step, train top-layer after

yi = f*(xi) q
f*(x) = p(uT

1 x, …, uT
r x)

n = Θ(dq)

n = O(d2r + drq)



Inductive biases + connections to benign overfitting

• Key idea: gradient descent with proper initializations is biased in favor of 
intrinsically simple neural networks


• Recipe for understanding feature learning


1. Identify inductive biases that influence learning algorithm


2. Relate that inductive bias to generalization/adaptivity



Variational norm

Weight norm: ,  ,


1. Identify inductive biases that influence learning algorithm 

• For large , gradient descent converges to  
[Bach & Chizat, ’21]


2. Relate that inductive bias to generalization/adaptivity 

• If target  has  for all , then sample complexity  
[Parhi & Nowak, ’22]

∥f( ⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

m arg min
θ

R̂(θ) + λ∥f( ⋅ ; θ)∥ℛ

f* ∥f*∥ℛ ≤ B d Õ(n− d + 3
2d + 3 )



Variational norm (ctd.)
Weight norm: ,  ,


Question: How does  for  behave?


A. Piecewise-linear interpolation for  case: 

Linear spline interpolation is one  
solution 
[Savarese et al ’19]


All solutions have linear splines when 
“local convexity” changes 
[Hanin ’21]

∥f( ⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

f( ⋅ ; θ) θ = arg min
θ

R̂(θ) + λ∥f( ⋅ ; θ)∥ℛ

d = 1

[Savarese ’19]



Variational norm (ctd.)
Weight norm: ,  ,


Question: How does  for  behave?


B. Radon transform minimization for general  case: 

Exact characterization of norm in terms 
of Radon transform of Laplacian: 
     
[Ongie et al, ’19]


… but doesn’t tell us about interpolation solution

∥f( ⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

f( ⋅ ; θ) θ = arg min
θ

R̂(θ) + λ∥f( ⋅ ; θ)∥ℛ

d

∥f∥ℛ = ∥ℛ(Δd + 1
2 f )∥𝕃1(𝕊d−1×[−c0,c0])



Variational norm (ctd.)
Weight norm: ,  ,


Question: How does  for  behave?


C. Inductive bias can favor averaging-based solutions over projections: 

Even if data are intrinsically 1-dimensional,  may not be.


For parity dataset , for ,  averages together 
partial solutions rather than learning 1-d projection. 
[Sanford, Ardeshir, Hsu ‘22]

∥f( ⋅ ; θ)∥ℛ =
m

∑
j=1

|aj | f(x; θ) =
m

∑
j=1

ajϕ(wT
j x + bj), ∥wj∥ = 1

f( ⋅ ; θ) θ = arg min
θ

R̂(θ) + λ∥f( ⋅ ; θ)∥ℛ

f( ⋅ ; θ)

(x, x1x2…xd) x ∈ {±1}d f( ⋅ ; θ)

1⊤x



Recap

• Classical ML theory fails to explain benign overfitting in neural networks


• Benign overfitting can be analyzed more cleanly in simpler linear models and 
connected to certain kinds of “simplicity” enabled by a plethora of parameters


• While more difficult to study in neural networks, can consider simplicities that 
gradient descent is biased towards (e.g. variational norm) and connect to 
generalization (e.g. dimension adaptivity)


• These notions of simplicity are all intrinsically-linked in various ways (low 
intrinsic dimensionality, Radon transform, weight norm minimization, spline 
interpolation, averaging)… future questions involve connecting them. 



Thank you


