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Central issue of deep learning theory

 Goal of ML theory:

* Rigorous mathematical understanding capabilities and limitations of ML
algorithms, which translate to practical recommendations for practitioners.

e Problem:

ML theory is too pessimistic for deep learning; lack of theoretical
explanations for neural networks’ practical success.

* Two conflicting narratives for what makes ML models succeed: classical
ML theory vs modern deep learning practice.



Supervised learning setting

» Given samples (x;,¥), ..., (x,y,) ~ 9.

. Wanttolearn 4 : R¢ — 7Y such R(h) = E[Z(h(x),y)] is small for new
(X, y) ~D.

» Y = {x1} for classification, ‘% = R for regression.

A 1 «
How? Find i € # minimizing training error: R(h) = — Z £ (h(x;),y).
n
i=1
R() = R + RM—RM

population error  training error  generalization error




Narrative #1: Classical Theory
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ML textbook trade-offs: greater model complexity requires more samples

» Delicate balance between overfitting (high generalization error R(h) — ﬁ(h)) and
over-simplification (high training error R(h))
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Narrative #1: Classical Theory
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» Delicate balance between overfitting (high generalization error R(h) — IAQ(h)) and

over-simplification (high training error R(h))



Narrative #1: Classical Theory
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ML textbook trade-offs: greater model complexity requires more samples

» Delicate balance between overfitting (high generalization error R(h) — IAQ(h)) and
over-simplification (high training error R(h))



Narrative #1: Classical Theory
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ML textbook trade-offs: greater model complexity requires more samples

» Delicate balance between overfitting (high generalization error R(h) — ﬁ(h)) and
over-simplification (high training error R(h))




Narrative #1: Classical Theory

 Made rigorous with measurements of model complexity, like

VC-dimension, Rademacher complexity, fat-shattering
dimension.

« VC-dimension measures ability of hypotheses in Z to
correctly classify different labelings y..

 (Generalization bound based on VC-dimension:

. R(h) — R(h) = OG/VC(F)In)forallh € .

 Example: Linear classification

s VO(Z)=d+ 1.

. RO — R(b) = O(/In) forall h € 7. -

Model Complexity



Narrative #2: Deep Learning Practice

 Past decade: empirical dominance of deep learning
over other ML models

 How to train a neural network:

* |nitialize a very large model (# params > # samples)

* [rain with gradient descent until convergence to
very small training error

 Necessary tips & tricks: dropout, Adam, batch size,

regularization, specialized architectures, choice of
loss function, etc.



Clash between narratives

Unprincipled alchemy!

Irrelevant theory!




Clash between narratives

An example

e CoAtNet: current holder of SOTA for
ImageNet image classification (ignoring
ensemble models

* Achieves 86.09% accuracy on 1000-class
classification by a NN with 168M parameters
and 13M training samples.

 VC dimension of NNs with fixed depth and w
parameters is O(w log w) [Bartlett, et al "98].

e (Generalization bound is vacuous:

R(h) — R(h) = O(\/win).

arXiv:2106.04803v2 [cs.CV] 15 Sep 2021
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Abstract

Transformers have attracted increasing interests in computer vision, but they still
fall behind state-of-the-art convolutional networks. In this work, we show that
while Transformers tend to have larger model capacity, their generalization can be
worse than convolutional networks due to the lack of the right inductive bias. To
effectively combine the strengths from both architectures, we present CoAtNets
(pronounced “coat” nets), a family of hybrid models built from two key insights:
(1) depthwise Convolution and self-Attention can be naturally unified via simple
relative attention; (2) vertically stacking convolution layers and attention layers in
a principled way is surprisingly effective in improving generalization, capacity and
efficiency. Experiments show that our CoAtNets achieve state-of-the-art perfor-
mance under different resource constraints across various datasets: Without extra
data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with
13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy,
matching ViT-huge pre-trained with 300M images from JFT-300M while using
23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves
90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.

1 Introduction

Since the breakthrough of AlexNet [1], Convolutional Neural Networks (ConvNets) have been the
dominating model architecture for computer vision [2, 3, 4, 5]. Meanwhile, with the success of
self-attention models like Transformers [6] in natural language processing [7, £], many previous
works have attempted to bring in the power of attention into computer vision [9, 10, 11, 12]. More
recently, Vision Transformer (ViT) [13] has shown that with almost’ only vanilla Transformer layers,
one could obtain reasonable performance on ImageNet-1K [14] alone. More importantly, when
pre-trained on large-scale weakly labeled JFT-300M dataset [15], ViT achieves comparable results
to state-of-the-art (SOTA) ConvNets, indicating that Transformer models potentially have higher
capacity at scale than ConvNets.

While ViT has shown impressive results with enormous JFT 300M training images, its performance
still falls behind ConvNets in the low data regime. For example, without extra JFT-300M pre-training,
the ImageNet accuracy of ViT is still significantly lower than ConvNets with comparable model
size [5] (see Table 13). Subsequent works use special regularization and stronger data augmentation
to improve the vanilla ViT [16, 17, 18], yet none of these ViT variants could outperform the SOTA
convolution-only models on ImageNet classification given the same amount of data and computa-
tion [19, 20]. This suggests that vanilla Transformer layers may lack certain desirable inductive biases
possessed by ConvNets, and thus require significant amount of data and computational resource
to compensate. Not surprisingly, many recent works have been trying to incorporate the induc-
tive biases of ConvNets into Transformer models, by imposing local receptive fields for attention

! The initial projection stage can be seen as an aggressive down-sampling convolutional stem.
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Goal: a theory of benign overfitting that
mathematically describes why some overfitting
models generalize.

Challenge: It's mathematically very difficult to say = e, 'f': ﬁg
things about neural networks i

Many other theoretical limitations to reconcile;:
approximation, optimization, representation
learning...




Can they be reconciled? (ctd)

Generality/
Rigor

Learning theory proofs, removed from deep learning
¥ (e.g. learning halfspaces)

Proofs about other models with common properties
'4 (e.g. over-parameterized linear regression)

/ Proofs about simple NNs (e.g. 2-layer NN, NTK)

Empirical ML (e.qg. lottery ticket
/ hypothesis, neural collapse)

/ Deep learning SOTA

Realistic



Benign overfitting and double-descent

Benign Overfitting Double Descent
Model generalizes despite over- Increasing model complexity beyond initial
parameterization and very small training error point of overfitting causes second descent of

generalization error
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Benign overfitting and double-descent
* Question: What if benign overfitting in NNs PN ¢ o0 “
is caused by simple data patterns that are @ o0
easy to fit with any model”? 0o © @
@ o O
 [ZBHRV17]: NNs can perfectly classity
randomly labeled samples - |
m=—@ true labels
« —> benign overfitting can’t be a 2.0} o—e random labels |-
property of dataset alone 2 »—w shuffled pixels
o 15k -~ random pixels |-
» [BMM18]: Similar phenomena for kernel 2 gaussian
regression >
0.5
« —> worth studying simpler models than |
deep neural networks 0.0, 0 e

thousand steps



Where can you find benign overfitting?

 Least-squares regression [BHX19, BLLT19, HMRT19, Mitra19, MVSS19]
* Ridge regression [TB20]

» Kernel regression [RZ19, LRZ20]

 Support vector machines [MNSBHS20, CL20, ASH20]

« Random feature models [MM19]

* Boosting [BFLS98]

* Neural networks (empirical) [NKBYBS19, SGDSBW19]



Linear regression

» Sample (x;,¥),...,(x,,y,) € Ix R. (X,y) € R™ x R"

e Learnx — O x.

« Ordinary least-squares (OLS) (classical, n > d):

0 € R? minimizes Z (éTxi — yi)z, or 0 = X'y = XTX)"'XTy.
i=1

« Minimum-norm interpolation (interpolation, d > n):

. 0 € R minimizes H6A’H such that é’Txi =y, Or 0 = X'y = X(xXx")~y.

« Classical generalization bound: R(/) — IAQ(h) < O(W/d/n) [Audibert and Catoni,
'10]



Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

 Analysis of when benign overfitting occurs for over-parameterized OLS (d > n).

» Subgaussian x; with covariance X (with eigenvalues 4, > 4, > ... > 4 ), optimal weights 6*, and
subgaussian noise o.

Depends on effective ranks of 2: r,(2) = AlA . and R (Z) = (Y 1)1 Y A2
k ' M+ 1 k l I
1>k 1>k 1>k

 Theorem: With probability 0.99 for k* = min{k > 0 : r (%) > bn}:

R(h) = 0(\\ 1%, (\/r()f) i ro?) T 02(% i ’/22)»
fE

* Bound by bias-variance decomposition, concentration bounds based on spectrum, analysis of projection
operator onto row space of X.




Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

« Theorem: With probability 0.99 for &* = min{k > 0 : r(X) > bn}:

R(h) = 0(\\9*”2/11 (\/FO;Z) i ’”Of‘)> N 02(]{7* TR n(z) >)
k*

* This bound indicates that benign overfitting occurs when...

e The variances 4,, ..., 4, decay not too fast but not too slow. (e.g. occurs for

A= 1/(ilog*(i + 1)))
* Qutput y depends mostly on high-variance directions of x

« — Benign overfitting occurs when there are many low-importance low-variance
features that cancel one another out



Limitations of benign overfitting in linear regression

 Beaten by properly regularized ridge regression

 Bounds are distribution-dependent [Bartlett and Long ’20]



Hard SVM or maximum-margin classification
/<5,x> =0

* Linearly separable o 6
d 6 ; !
(X1, V1)5 -5 (X, y,) € R X {—1,1}. e
e Learnx sign(é’Tx). ’
. 0 € I 4 minimizes H@Hz such that ) . 0
yleTXl Z 1 . o P o
: e nl .. __ ' .
» X, is a support vector if " x; = y.. o v
 Classical generalization bounds rely on n
bounding nhumber of support vectors. G- = G
N~



Motivation
Or: It’'s 2022, who cares about SVMs??

 (Gradient descent sometimes biased in favor of max-margin classifier

* C(Classification tasks with logistic loss function converge
to the max margin solution [Soudry et al, ’17], [Ji & Telgarsky '19]

 Wide two-layer neural nets with logistic loss function also converge to
max margin solutions [Chizat et al, *20]



SVM benign overfitting by connection to OLS
IMNSBHS20]

Exhibits benign overfitting for SVM linear classification of Gaussian data
with bi-level variances:

1. For certain distributions, over-parameterized OLS regression for y: € |
has benign overfitting. [BLLT19]

2. Then, “OLS classification” with y, € {£ 1} and prediction rule
X - sign(xTHOLS) also has benign overfitting.

3. Given dimension d = Q(n>? log n), same weights returned by OLS
classification and SVM: 0,; ¢ = Ogy,-



Tightening [MNSBHS20]...

Question: For what d = d(n) do we have SVM = OLS with high probability?

 [MNSBHS20] SVM = OLS
N(0,2)
MY SVM # OLS SVM=OLs |
[ 0] N(0,1,) Anisotropic Subg.
SVM # OLS
Anisotropic Subgaussian
 [ASH21]
SVM # OLS SVM = OLS
e —————————————
N (0,1;) 2nlogn (0,1,

d—

Ch cnlogn Cnlogn



Our setting

(More general in the paper!)

e Data model: Labels are fixed and features are standard Gaussian
x,~NO,1), y,€{*x1},1<i<n
e Question: For what d = d(n) do we have SVM = OLS with high probability?

min ||6||, min ||0,

l

S.1. y-xl.TH > 1 S 1. xiTH =y

« SVM = OLS if and only if every sample X; is a support vector (i.e. xl.T6’ = y)).



Features for sample |

Proof ideas

Label for sample | yl
Collection of Features X
except sample | \i

Collection of labels
except sample |

Key lemma [HMX20]

I<n

~1
max {< ViX; , X\Tl. (X\ZX\TZ.) Wi >} <1 < All samples are support vectors (SVM = OLS)

. Proof: Analysis of (X\iX\T,-)_l with Cramer’s rule.

| -1 .
. Intuition: WS)LS = X\Ti (X\iX\Tl,) w, = (VX WS)LS ) < 1 then Xx; is “necessary” in SVM



Proof ideas

max {(y;x; , X\Ti(X\iX\Ti)_IY\i>} <l

<n

—

i

. | Xy~ (Oa||X\i(X\iX\T,-)_1}’\iH%)-

. HX\i(X\iX\Ti)_IY\iH% = Y\Ti(X\iX\Ti)_l)’\i

. Gaussian concentration: X\ZX\TZ. ~ dI,_, and (X\Z-X\Tl.)_1 ~1/d-I _,.
c XX XD & I3 = (0 = 1)/

+  Z; | X\, behaves roughly as (O, (n — 1)/d)

Features for sample |

Label for sample | yl
Collection of Features X
except sample | \i

Collection of labels
except sample |

Question: For what values d = d(n) do we have the following with high probability?



Proof ideas

Question: For what values d = d(n) do we have max z; < lwith high
1<n

probability?

+  Z; | X\; behaves roughly as /¥ ((), (n — 1)/d).

If s were independent: max g, = ®p (\/ 2nlog(n)/d )

1<n
— d = O(nlog(n)) is a critical threshold

Remainder of proof: showing that same threshold occurs because dependence
among Z;'s Is weak.

Features for sample |

Label for sample | yl
Collection of Features X
except sample i \i
Collection of labels W\ ;
except sample | \l
T Tyl :
(%, X\i(X\iX\i) y\i> zl




Features for sample |

Label for sample i yl
P f -d Collection of Features X
rOO I eaS except sample | \i
Collection of labels .
except sample i y\l
. Question: For what values d = d(n) do we have max z; < lwith high probability? (v s XTEGXD ™) | %
1I<n

« |dea: Split Z; into three terms, which can be more easily controlled by considering a subsample of m << n

. zi(l) c= <yixi [(X\ZX\Tl T — l/d I l]y\l>
. (2) =1/d - (ylx [m]\ly[m]\l>

3) .
o () =1/d - <yzx \[m]y\[m]>

max z; > | < max(z(l) +z(2) +z(3)) > 1 <= max \z(l)\ < 1 &= subgaussian concentration

I<n I<m iI<m
max \z(z)\ < 1 &= subgaussian concentration
I<m
max z(3) > 3 <= anti-concentration: Berry-Esseen
I<m



Our results, recap

Question: For what d = d(n) do we have SVM = OLS with high probability?

 [MNSBHS20] SVM = OLS
N(0,2)
MY SVM # OLS SVM=OLs |
[ 0] N(0,1,) Anisotropic Subg.
SVM # OLS
Anisotropic Subgaussian
 [ASH21]
SVM # OLS SVM = OLS
e —————————————
N (0,1;) 2nlogn (0,1,

d—

Ch cnlogn Cnlogn



Other contributions

Sharp asymptotic
threshold at d = 2n logn

1.00

0.75

Laplacian Radamacher Uniform 0.50

* Extension to anisotropic subgaussian inputs and
linearly-separable outputs e i

* Universality of SVP phenomenon (SVM = OLS)
under different feature distributions

 Asymptotic rate of convergence of SVM = OLS ~1.00- /
threshold to d = 2n logn 20 3
A geometric interpretation of when SVM = OLS £ s0. s
8 90
o Statistically rigorous study of empirical 5 0.25-
universality (a la [Donoho & Tanner, '09]) S .

0.5 1.0 15 2.0 25

2nlogn



Zooming back out...

Questions to ask about over-parameterization/benign overfitting/neural networks

 When does benign overfitting occur for

more complex neural networks?
) /ﬂftrloalov’/iow Qoy ime.””
P> n

 Especially those behaving very differently
from linear/kernel models.

 \Which data assumptions are realistic to
make for ML applications?

 What is the role of voting/averaging in
benign overfitting?

>
( Ma/el (ample K/’y)

 What is the implicit bias of gradient
descent, and does it connect to simpler
models?



Thank you
(Really, thank you)



