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Talk outline

1. Benign overfitting, double 
descent, and deep learning 
theory 

2. Benign overfitting for linear 
regression and classification 

3. Behavior of high-dimensional 
least-squares regression and 
max-margin classification models



Central issue of deep learning theory

• Goal of ML theory: 


• Rigorous mathematical understanding capabilities and limitations of ML 
algorithms, which translate to practical recommendations for practitioners.


• Problem: 


• ML theory is too pessimistic for deep learning; lack of theoretical 
explanations for neural networks’ practical success.


• Two conflicting narratives for what makes ML models succeed: classical 
ML theory vs modern deep learning practice.



Supervised learning setting

• Given samples 


• Want to learn  such  is small for new 



•  for classification,  for regression.


• How? Find  minimizing training error: .


(x1, y1), …, (xn, yn) ∼ 𝒟 .

h : ℝd → 𝒴 R(h) = 𝔼[ℓ(h(x), y)]
(x, y) ∼ 𝒟 .

𝒴 = {±1} 𝒴 = ℝ

h ∈ ℋ R̂(h) =
1
n

n

∑
i=1

ℓ(h(xi), yi)

R(h)
⏟

population error

= R̂(h)
⏟

training error

+ R(h) − R̂(h)

generalization error



Narrative #1: Classical Theory

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)

Population 

Error

Training

Error

Error

Model Complexity




Narrative #1: Classical Theory

Unexpressive Model

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)

Population 

Error

Training

Error

Error

Model Complexity


•  is too small

• Bad training error

• Good generalization error
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Narrative #1: Classical Theory

Appropriately Expressive Model

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)

Population 

Error

Training

Error

Error

Model Complexity


•  is at the “sweet spot”

• Good training error

• Good generalization error
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Narrative #1: Classical Theory

Too Expressive Model

• ML textbook trade-offs: greater model complexity requires more samples


• Delicate balance between overfitting (high generalization error ) and 
over-simplification (high training error )

R(h) − R̂(h)
R̂(h)
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Error
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Error

Error
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•  is too large

• Good training error

• Bad generalization error

• Overfitting
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Narrative #1: Classical Theory
• Made rigorous with measurements of model complexity, like 

VC-dimension, Rademacher complexity, fat-shattering 
dimension.


• VC-dimension measures ability of hypotheses in  to 
correctly classify different labelings . 


• Generalization bound based on VC-dimension: 


•  for all .


• Example: Linear classification


• .


•   for all .

ℋ
yi

R(h) − R̂(h) = O( VC(ℋ)/n) h ∈ ℋ

VC(ℋ) = d + 1

R(h) − R̂(h) = O( d/n) h ∈ ℋ

Population 

Error

Training

Error

Error

Model Complexity




Narrative #2: Deep Learning Practice

• Past decade: empirical dominance of deep learning 
over other ML models


• How to train a neural network:  

• Initialize a very large model (# params > # samples)


• Train with gradient descent until convergence to 
very small training error


• Necessary tips & tricks: dropout, Adam, batch size, 
regularization, specialized architectures, choice of 
loss function, etc.



Clash between narratives

Unprincipled alchemy!

Irrelevant theory!



Clash between narratives
An example

• CoAtNet: current holder of SOTA for 
ImageNet image classification (ignoring 
ensemble models)


• Achieves 86.09% accuracy on 1000-class 
classification by a NN with 168M parameters 
and 13M training samples.


• VC dimension of NNs with fixed depth and  
parameters is  [Bartlett, et al ’98].


• Generalization bound is vacuous: 
.

w
Θ(w log w)

R(h) − R̂(h) = Õ( w/n)



Can they be reconciled?

• Goal: a theory of benign overfitting that 
mathematically describes why some overfitting 
models generalize.


• Challenge: It’s mathematically very difficult to say 
things about neural networks


• Many other theoretical limitations to reconcile: 
approximation, optimization, representation 
learning…



Can they be reconciled? (ctd)

Realistic

Generality/
Rigor

Deep learning SOTA

Empirical ML (e.g. lottery ticket 
hypothesis, neural collapse)

Proofs about simple NNs (e.g. 2-layer NN, NTK)

Proofs about other models with common properties 
(e.g. over-parameterized linear regression)

Learning theory proofs, removed from deep learning 
(e.g. learning halfspaces)



Benign overfitting and double-descent
Benign Overfitting Double Descent

Model generalizes despite over-
parameterization and very small training error

Increasing model complexity beyond initial 
point of overfitting causes second descent of 
generalization error



Benign overfitting and double-descent
• Question: What if benign overfitting in NNs 

is caused by simple data patterns that are 
easy to fit with any model?


• [ZBHRV17]: NNs can perfectly classify 
randomly labeled samples 


•  benign overfitting can’t be a 
property of dataset alone 


• [BMM18]: Similar phenomena for kernel 
regression 


•  worth studying simpler models than 
deep neural networks

⟹

⟹



Where can you find benign overfitting?

• Least-squares regression [BHX19, BLLT19, HMRT19, Mitra19, MVSS19]


• Ridge regression [TB20]


• Kernel regression [RZ19, LRZ20]


• Support vector machines [MNSBHS20, CL20, ASH20]


• Random feature models [MM19]


• Boosting [BFLS98]


• Neural networks (empirical) [NKBYBS19, SGDSBW19]



Linear regression
• Sample . .


• Learn .


• Ordinary least-squares (OLS) (classical, ): 


•  minimizes , or .


• Minimum-norm interpolation (interpolation, ):


•  minimizes  such that , or .


• Classical generalization bound:  [Audibert and Catoni, 
’10]

(x1, y1), …, (xn, yn) ∈ ℝd × ℝ (X, y) ∈ ℝn×d × ℝn

x ↦ ̂θTx

n ≫ d

̂θ ∈ ℝd
n

∑
i=1

( ̂θTxi − yi)2 ̂θ = X†y = (XTX)−1XTy

d ≫ n
̂θ ∈ ℝd ∥ ̂θ∥ ̂θTxi = yi

̂θ = X†y = X(XXT)−1Y

R(h) − R̂(h) ≤ O( d/n)



Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

• Analysis of when benign overfitting occurs for over-parameterized OLS .


• Subgaussian  with covariance  (with eigenvalues ), optimal weights , and 
subgaussian noise .


• Depends on effective ranks of :  and .


• Theorem: With probability 0.99 for :


  


• Bound by bias-variance decomposition, concentration bounds based on spectrum, analysis of projection 
operator onto row space of .

(d ≫ n)

xi Σ λ1 > λ2 > … > λd θ*
σ

Σ rk(Σ) = ∑
i>k

λi/λk+1 Rk(Σ) = (∑
i>k

λi)2/∑
i>k

λ2
i

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

R(h) = O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
X



Benign overfitting: feature importance
[Bartlett, Long, Lugosi, Tsigler ’19]

• Theorem: With probability 0.99 for :


  


• This bound indicates that benign overfitting occurs when…


• The variances  decay not too fast but not too slow. (e.g. occurs for 
)


• Output  depends mostly on high-variance directions of 


•  Benign overfitting occurs when there are many low-importance low-variance 
features that cancel one another out

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

R(h) = O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
λ1, …, λd

λi = 1/(i log2(i + 1))

y x

⟹



Limitations of benign overfitting in linear regression

• Beaten by properly regularized ridge regression


• Bounds are distribution-dependent [Bartlett and Long ’20]



Hard SVM or maximum-margin classification

• Linearly separable 
.


• Learn .


•  minimizes  such that 
.


•  is a support vector if .


• Classical generalization bounds rely on 
bounding number of support vectors.

(x1, y1), …, (xn, yn) ∈ ℝd × {−1,1}

x ↦ sign( ̂θTx)
̂θ ∈ ℝd ∥ ̂θ∥2

yi
̂θTxi ≥ 1

xi
̂θTxi = yi



Motivation
Or: It’s 2022, who cares about SVMs??

• Gradient descent sometimes biased in favor of max-margin classifier

• Classification tasks with logistic loss function converge  

to the max margin solution [Soudry et al, ’17], [Ji & Telgarsky ’19] 

• Wide two-layer neural nets with logistic loss function also converge to 

max margin solutions [Chizat et al, ’20]



SVM benign overfitting by connection to OLS
[MNSBHS20]
Exhibits benign overfitting for SVM linear classification of Gaussian data 
with bi-level variances:


1. For certain distributions, over-parameterized OLS regression for  
has benign overfitting. [BLLT19]


2. Then, “OLS classification” with  and prediction rule 
 also has benign overfitting.


3. Given dimension , same weights returned by OLS 
classification and SVM: .

yi ∈ ℝ

yi ∈ {±1}
x ↦ sign(xTθOLS)

d = Ω(n3/2 log n)
θOLS = θSVM



• [MNSBHS20] 

• [HMX20] 

 

• [ASH21]

Tightening [MNSBHS20]…
Question: For what  do we have SVM = OLS with high probability? d = d(n)

d

𝒩(0,Σ)
SVM = OLS

Cn log n

SVM  OLS≠
𝒩(0,Id)

cn

Anisotropic Subg.
SVM = OLS

SVM  OLS≠
Anisotropic Subgaussian

cn log n

𝒩(0,Id)𝒩(0,Id) 2n log n
SVM  OLS≠ SVM = OLS{



Our setting
(More general in the paper!)

• Data model: Labels are fixed and features are standard Gaussian 

• Question: For what  do we have SVM = OLS with high probability?


• SVM = OLS if and only if every sample  is a support vector (i.e. ).

d = d(n)

xi xT
i θ = yi

xi ∼ 𝒩(0,Id), yi ∈ {±1}, 1 ≤ i ≤ n

min ∥θ∥2

yix⊺
i θ ≥ 1s.t.

min ∥θ∥2

x⊺
i θ = yis.t.



• Proof: Analysis of  with Cramer’s rule.


• Intuition: 

(X∖iX⊺
∖i)

−1

w(i)
OLS = X⊺

∖i (X∖iX⊺
∖i)

−1
y∖i

Proof ideas
Features for sample i

Label for sample i

Collection of Features 
except sample i

Collection of labels 
except sample i

xi
yi
X∖i

y∖i

 then  is “necessary” in SVM⟹ ⟨ yixi , w(i)
OLS ⟩ < 1 xi

max
i≤n {⟨ yixi , X⊺

∖i (X∖iX⊺
∖i)

−1
y∖i ⟩} < 1 ⟺ All samples are support vectors (SVM = OLS)

Key lemma [HMX20]



Proof ideas

• Question: For what values  do we have the following with high probability? 
 
 

• .  


• 


• Gaussian concentration:  and .


• .


•  behaves roughly as 

d = d(n)

zi ∣ X∖i ∼ 𝒩(0,∥X∖i(X∖iXT
∖i)

−1y∖i∥2
2)

∥X∖i(X∖iXT
∖i)

−1y∖i∥2
2 = yT

∖i(X∖iXT
∖i)

−1y∖i

X∖iXT
∖i ≈ dIn−1 (X∖iXT

∖i)
−1 ≈ 1/d ⋅ In−1

∥X∖i(X∖iXT
∖i)

−1y∖i∥2
2 ≈ ∥y∖i∥2

2/d = (n − 1)/d

zi ∣ X∖i 𝒩 (0, (n − 1)/d)

max
i≤n

{⟨yixi , X⊺
∖i(X∖iX⊺

∖i)
−1y∖i⟩}

zi

< 1

Features for sample i

Label for sample i

Collection of Features 
except sample i

Collection of labels 
except sample i

xi
yi
X∖i

y∖i



Proof ideas

• Question: For what values  do we have with high 
probability? 

•  behaves roughly as  .


• If ’s were independent:  .


•  is a critical threshold


• Remainder of proof: showing that same threshold occurs because dependence 
among ’s is weak.

d = d(n) max
i≤n

zi < 1

zi ∣ X∖i 𝒩 (0, (n − 1)/d)
zi max

i≤n
zi = Θp ( 2n log(n)/d)

⟹ d = Θ(n log(n))

zi

Features for sample i

Label for sample i

Collection of Features 
except sample i

Collection of labels 
except sample i

xi
yi
X∖i

y∖i

⟨yixi , X⊺
∖i(X∖iX⊺

∖i)
−1y∖i⟩ zi



Proof ideas

• Question: For what values  do we have with high probability? 

• Idea: Split  into three terms, which can be more easily controlled by considering a subsample of  
samples. :


• 


•  


• 


•       subgaussian concentration 

                                                                                   subgaussian concentration 

                                                                                   anti-concentration: Berry-Esseen

d = d(n) max
i≤n

zi < 1

zi m ≪ n
zi = z(1)

i + z(2)
i + z(3)

i

z(1)
i := ⟨yixi , X⊺

∖i[(X∖iX⊺
∖i)

−1 − 1/d ⋅ In−1]y∖i⟩

z(2)
i := 1/d ⋅ ⟨yixi , X⊺

[m]∖iy[m]∖i⟩

z(3)
i := 1/d ⋅ ⟨yixi , X⊺

∖[m]y∖[m]⟩

max
i≤n

zi ≥ 1 ⟸ max
i≤m

(z(1)
i + z(2)

i + z(3)
i ) ≥ 1 ⟸ max

i≤m
|z(1)

i | ≤ 1 ⟸
max
i≤m

|z(2)
i | ≤ 1 ⟸

max
i≤m

z(3)
i ≥ 3 ⟸

Features for sample i

Label for sample i

Collection of Features 
except sample i

Collection of labels 
except sample i

xi
yi
X∖i

y∖i

⟨yixi , X⊺
∖i(X∖iX⊺

∖i)
−1y∖i⟩ zi



• [MNSBHS20] 

• [HMX20] 

 

• [ASH21]

Our results, recap
Question: For what  do we have SVM = OLS with high probability? d = d(n)

d

𝒩(0,Σ)
SVM = OLS

Cn log n

SVM  OLS≠
𝒩(0,Id)

cn

Anisotropic Subg.
SVM = OLS

SVM  OLS≠
Anisotropic Subgaussian

cn log n

𝒩(0,Id)𝒩(0,Id) 2n log n
SVM  OLS≠ SVM = OLS{



Other contributions

• Extension to anisotropic subgaussian inputs and 
linearly-separable outputs


• Universality of SVP phenomenon (SVM = OLS) 
under different feature distributions


• Asymptotic rate of convergence of SVM = OLS 
threshold to 


• A geometric interpretation of when SVM = OLS


• Statistically rigorous study of empirical 
universality (à la [Donoho & Tanner, ’09])

d = 2n log n
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Zooming back out…

• When does benign overfitting occur for 
more complex neural networks?


• Especially those behaving very differently 
from linear/kernel models.


• Which data assumptions are realistic to 
make for ML applications?


• What is the role of voting/averaging in 
benign overfitting?


• What is the implicit bias of gradient 
descent, and does it connect to simpler 
models?

Questions to ask about over-parameterization/benign overfitting/neural networks



Thank you

(Really, thank you)


