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Our Problem: We study statistical and approximation properties of interpolating two layer : . . 1. Approximation:
, o Curse of dimensionality , , , , , _
ReLU networks with small variational norm (R-norm). = The R-norm is adaptive to low dimensional structure, e.g. the R-norm of a ridge function

. . : : : » Without any assumption on the data we are doomed to require n = 24 number of samples i i i ivari '
= This norm captures the functional effect of controlling the size of network weights. A the in theyvvorst cpase . nee P s equivalent to its univariate function,
= This allows the network width to be unbounded. S ’ | o | flr)=gw'z) = |fllz = vl gl = l|w] Hg//HL1<Q> = [|wll ||¢'|| 1
= Practically motivated: * Inductive biases based on certain variational norms, such as the R-norm, are believed to A oo i | ) | |
’ i i i = Any ridge function that approximates parity alternates between =+1 values at least d times.
. Correspond to weight decay regularization in neural network training. offer a Way around the curse. of dimensionality suffered by kernel methods [1]. y riag PP parity
= It has connections to implicit bias of GD in the feature learning regime. " For optimally chosen ¢, solutions to (2) can be adaptive to low dimensional structure and = Through a careful usage of the mean
= |t is known that neural networks trained with optimal weight decay regulartization can be have sample complexity bounds whose exponent depends on the intrinsic dimension [1, 8. value theorem its tangent slope
adaptive to low dimesnional structure. * But how? One may believe that R-norm inductive must alternate £0(v/d) at least d ']
T : C e . . . bias achieves this adaptivity by favoring functions times, "
Our Findings: For certain target distributions, minimum R-norm interpolants are: with low dimensional structure. | (wa(iH)) B (me(i>> — -
1. Intrinsically multivariate functions (vary in many directions), even when there are ridge » Empirical/theoretical evidence that neural networks |g’(ti)] > 5 J Y J 0
functions (vary in only one direction) that fit the data. with weight decay regularization can identify the low | C e w'w —w'x q
. . _ . . . . . . . . . o ¢ ™ . * - o
2. Statistically sub-optimal in terms of generalization. dimensional architecture for certain learning tasks. R N « For the upper bound we employ an averaging strategy that combines a collection of
e - distinct ridge functions, each of which has few alternations, and perfectly fits a fraction of

Figure 1. Image from [8]

the parity dataset.

Bounded Norm Neural Networks Question: Do minimum R-norm interpolants have a low dimensional structure when such struc- f(z) = i Z (@)1 {wa _ 0}
2d

. . TS
Model: Suppose the data consist of n samples (x;,¥y;)i<n ~ v € P(£2 x R), where 2 C RY is a ture is present in the target distribution: we{+1}4
spherically symmetric bounded domain. Let v,, denote the empirical data distribution. _ _ _ o
, , | o | Main Results (Simplified) 2. Generalization:
Euclidean Formulation: Consider two layer ReLU neural networks, with width m, a skip connec- « For the upper bound we use standard Rademacher complexity bounds for bounded
tion, and parameters 6 = (a;, bj, ¢;)i<m € (R X R x R)™, Parity Distribution: Consider the target distribution (x,y) ~ v € P({£1}¥ x {£1}) where R-norm function class.
m T X ~ Uniform{il}d is uniformly sampled from hypercube and labeled y = x(x) = H?:1Xj- = For the lower bound we use a ”Cap~ construction” from [2] to produce a robust network
for =Rz Y ai(bjotc), ' with small Lipschitz and R-norm O(%) interpolating the n samples.
i=1 = Parity can be represented by ridge functions, dl
The R-norm of a function f : 2 — R is the minimum cost of approximating it arbitrary well by v d T
r € 1*£l r)=qg(l x). | | | | | T
two layer RelLU networks, =L x(z) =g ) -3 -1 ! \?/ N References
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ve20 fp €argminflfile sty — f(2)lL2p,) <€ (2) Generalization
f:2—R
Characterizing the Norm and Variational Problem: Though R-norm is a variational norm, it can Theorem: Given n samples from parity distribution v € P({£1}4 x {£1})

be explicitly characterized in terms of the functions itself under mild assumptions: . ,
o . F=argmin||fllg st f(x;)=y;
1. Univariate Functions: f:2-R
= Ford =1, [9] showed || f|lr = Hf”HLl(Q) = Jo|f"(@)] dz. = (Upper Bound) When n = &(d>) all minima approximates parity well with high probability.
= |4, ?] characterized all the solutions to the variational problem (1).

ae | vfeF |x—dpof|, =of
2. Multivatiate Functions: /e x—dipef L2(v) o(1)
= In general [6] showed that R-norm is related to Radon Transform of higher order = (Lower Bound) When n = 4(d2) all minima are far from parity with high probability,
derivatives of the function. o o
= Characterizing even a solution to the variational problem in general is difficult. vieF HX —clipof ‘LQW =1-o0(1)

= Recent work [5] do so for rank-one datasets using convex duality.

3. Ridge Functions:

= Information theoretically n = Q(d) is sufficient to learn parity (gaussian elimination).
= For functions that only vary in one direction, it reduces to the univariate case,

= R-norm inductive bias is not sufficient to achieve statistically optimal sample complexity for
JweSTl Veen flx)=gw'z) = |fllz =llglr - learning parity functions.
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